CS CONE 12-20 24 1 15 15 15 15 15 15 15	Hakii Siiciiicai Saiptiaasi			meel e			ILLEBARI	11,1/36
MAT'L TYPE APPROX. APPROX. NO. WORKING CAPACITY	DIMENSIONS AND CAPACITIES O	F PLANNI	ED HAZAI	RDOUS WASTI	E STORAGE	TANKS		
MAT'L TYPE APPROX. OF OF TANK SIZE OVERALL OF TANK CAP. PER SIZE OVERAL OF TANK CAP. PER SIZE OVERALL OF TANK CAP. PER SIZE OVERALL OF TANK CAP. PER SIZE OV	Planned future permitted storage t	anks are	listed by	y containment	t dike locatio	n.		
MAT'L TYPE APPROX. OF OF TANK SIZE OVERALL OF TANK CAP. PER SIZE O								
MAT'L TYPE APPROX. OF OF TANK SIZE OVERALL OF TANK CAP. PER SIZE OVERAL OF TANK CAP. PER SIZE OVERALL OF TANK CAP. PER SIZE OV		[M = 1.0	000 gal	C/S = carbon	steel. S/S =	stainle	ss steell	1 1
OF OF TANK SIZE OVERALL OF TANK CAP. PER SIZE DIKE DESIGNATION CONST. BTM. DIAHT, it. HEIGHT, it. TKS. [M gal.] [M gal.] [M gal.] [M gal.] [M gal.] [M gal.]								
OF OF TANK SIZE OVERALL OF TANK CAP. PER SIZE DIKE DESIGNATION CONST. BTM. DIA.HT,ft. HEIGHT,ft. TKS. [M gal.]		MATE	TYPE	APPROY	ADDDAY	NO	WORING	CADACITY
DIKE DESIGNATION			-				1	
Color Colo	DIVE DECIONATION				 			
With Planned Tanks S/S FLAT 12-24.8 25 2 21 42	DIKE DESIGNATION	CONST	DIM.	DIANI,R.	ncigni,it.	IV9.	(w gai.)	[M gai.]
With Planned Tanks S/S FLAT 12-24.8 25 2 21 42	F" A OF BEREG "P" R F"LHO			40.050			P. 5-	
Total Permitted Capacity, M gal. CS CONE 8 - 20 23 2 6 12 CS CONE 10.5 - 27 32 1 16 16 Total Permitted Capacity, M gal. Rail Dike R-1 CS FLAT 12 - 29.6 30 3 25 75 CS CONE 12 - 20 24 1 15 15 Total Permitted Capacity, M gal. Total Permitted Capacity, M gal. Total Permitted Capacity, M gal. Fank Farm Dike B-4 CS FLAT 12 - 29.6 30 2 25 50 CS CONE 12 - 29.6 30 2 25 50 Total Permitted Capacity, M gal.					<u> </u>		<u> </u>	
Cx CONE 8 - 20 23 2 6 12	(With Planned Tanks)	S/S	FLAT	12 - 24.8	25	2	21	42
CS CONE 10.5 - 27 32 1 16 16	Total Permitted Capacity, M ga	1.			Para and a second secon		·	167
CS CONE 10.5 - 27 32 1 16 16	Eviatina Food 9 Battama Dike	re	CONE	0 20	99	9	c	19
Total Permitted Capacity, M gal. Rail Dike R-1 CS FLAT 12 - 29.6 30 3 25 75 CS CONE 12 - 20 24 1 15 15 Total Permitted Capacity, M gal. Fank Farm Dike B-4 CS FLAT 12 - 29.6 30 2 25 50 CS DISH 12 - 19 23 5 15 75 CS CONE 12 - 20 24 2 15 30 Total Permitted Capacity, M gal. Total Permitted Capacity, M gal	LAISHING I CCU & LIURUIIIS DIKE		1				<u> </u>	
CS FLAT 12 - 29.6 30 3 25 75		LS	CUNE	10.5 - 27	32		16	16
CS CONE 12 - 20 24 1 15 15	Total Permitted Capacity, M ga	<u> </u>						28
CS CONE 12-20 24 1 15 15 Total Permitted Capacity, M gal. 90 Sank Farm Dike B-4 CS FLAT 12-29.6 30 2 25 50 CS DISH 12-19 23 5 15 75 CS CONE 12-20 24 2 15 30 Total Permitted Capacity, M gal. 155 W Fuels Dike F-1 CS DISH 9.5 1 9.5 9.5 CS CONE 10-15 26.5 1 10 10 Total Permitted Capacity, M gal. 19.5 W Fuels Dike F-2 [W. Sect.] CS DISH 12-19 23 4 15 60 East Warehouse Dike S/S SLOPE 4x6x7 Rect 10 2 1 2 CS CONE 4-7 10 2 0.75 1.5 W Solv. Cont. Proc. Bldg. CS SLOPE 4x6x7 Rect 10 2 1 2 Corrosive HW Proc. Bldg. S/S DISH 8-10.5 12 3 4 12 Corrosive HW Proc. Bldg. S/S DISH 8-10.5 12 3 4 12 Total Permitted Capacity, M gal. 12 12 13 14 12 Corrosive HW Proc. Bldg. S/S DISH 8-10.5 12 3 4 12 Corrosive HW Proc. Bldg. S/S DISH 8-10.5 12 3 4 12 Total Permitted Capacity, M gal. 12 12 13 14 12 Total Permitted Capacity, M gal. 15 15 Corrosive HW Proc. Bldg. S/S DISH 8-10.5 12 3 4 12 Total Permitted Capacity, M gal. 15 15 Total Permitted Capacity, M gal. 15 15 Total Permitted Capacity, M gal. 15 15 Total Permitted Capacity, M gal. 15								
Total Permitted Capacity, M gal. Solve FLAT 12-29.6 30 2 25 50 25 15 75 25 25 25 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	Rail Dike R-1	CS	FLAT	12 - 29.6	30	3	25	75
Tank Farm Dike B-4 CS FLAT 12 - 29.6 30 2 25 50 CS DISH 12 - 19 23 5 15 75 CS CONE 12 - 20 24 2 15 30 Total Permitted Capacity, M gal. Total Permitted Capacity, M gal. CS DISH 9.5 - 1 9.5 9.5 CS CONE 10 - 15 26.5 1 10 10 10 Total Permitted Capacity, M gal. Total Permit		CS	CONE	12 - 20	24	1	15	15
CS FLAT 12 - 29.6 30 2 25 50 CS DISH 12 - 19 23 5 15 75 CS CONE 12 - 20 24 2 15 30 Total Permitted Capacity, M gal. 155 W Fuels Dike F-1 CS DISH 9.5 -								
CS FLAT 12 - 29.6 30 2 25 50 CS DISH 12 - 19 23 5 15 75 CS CONE 12 - 20 24 2 15 30 Total Permitted Capacity, M gal. 155 W Fuels Dike F-1 CS DISH 9.5 -	Total Permitted Capacity. M ga	1.						90
CS DISH 12-19 23 5 15 75 CS CONE 12-20 24 2 15 30 Total Permitted Capacity, M gal. 155	, , , , ,							
CS DISH 12-19 23 5 15 75 CS CONE 12-20 24 2 15 30 Total Permitted Capacity, M gal. 155	Tank Farm Dike B-4	CS	FLAT	12 - 29.6	30	2	25	50
CS CONE 12 - 20 24 2 15 30						1	1	<u> </u>
Total Permitted Capacity, M gal. W Fuels Dike F-1 CS DISH 9.5 - 1 9.5 9.5 CS CONE 10 - 15 26.5 1 10 10 10 10 10 10 10 10 10 10 10 10 1	}		+	1	 	·	<u> </u>	
W Fuels Dike F-1			OOIL	12 20	E-7	-	13	
W Fuels Dike F-1	Total Darmittad Canacity Mag	 .B			ļ	 		155
CS CONE 10 - 15 26.5 1 10 10 10 —— Total Permitted Capacity, M gal. 19.5 W Fuels Dike F-2 [W. Sect.] CS DISH 12 - 19 23 4 15 60 East Warehouse Dike S/S SLOPE 4x6x7 Rect 10 2 1 2 CS CONE 4 - 7 10 2 0.75 1.5 —— 3.5 W Solv. Cont. Proc. Bldg. CS SLOPE 4x6x7 Rect 10 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	i utai reimittea Capacity, wi ga	1	 					133
CS CONE 10 - 15 26.5 1 10 10 10 —— Total Permitted Capacity, M gal. 19.5 W Fuels Dike F-2 [W. Sect.] CS DISH 12 - 19 23 4 15 60 East Warehouse Dike S/S SLOPE 4x6x7 Rect 10 2 1 2 CS CONE 4 - 7 10 2 0.75 1.5 —— 3.5 W Solv. Cont. Proc. Bldg. CS SLOPE 4x6x7 Rect 10 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	LRU Facto Dilato E 1	CC	DICH	O E		-	n r	n c
Total Permitted Capacity, M gal. 19.5 IW Fuels Dike F-2 [W. Sect.] CS DISH 12-19 23 4 15 60 East Warehouse Dike S/S SLOPE 4x6x7 Rect 10 2 1 2 CS CONE 4-7 10 2 0.75 1.5	NY FUEIS DIKE F-1			1	865	1		-
W Fuels Dike F-2 (W. Sect.) CS DISH 12-19 23 4 15 60 East Warehouse Dike S/S SLOPE 4x6x7 Rect 10 2 1 2 CS CONE 4-7 10 2 0.75 1.5		US	CUNE	10-15	Zb.5		10	10
W Fuels Dike F-2 (W. Sect.) CS DISH 12-19 23 4 15 60	Total Permitted Capacity, M qa							19.5
East Warehouse Dike S/S SLOPE 4x6x7 Rect 10 2 1 2 CS CONE 4-7 10 2 0.75 1.5 3.5 SLOPE 4x6x7 Rect 10 2 1 2 0.75 2 1.5 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2								
East Warehouse Dike S/S SLOPE 4x6x7 Rect 10 2 1 2 CS CONE 4-7 10 2 0.75 1.5 3.5 SLOPE 4x6x7 Rect 10 2 1 2 0.75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HW Fuels Dike F-2 (W. Sect.)	CS	DISH	12 - 19	23	4	15	60
CS CONE 4-7 10 2 0.75 1.5 3.5 3.5 3.5		 				1 -	1	
CS CONE 4-7 10 2 0.75 1.5 3.5 3.5 3.5	Fast Warehouse Nike	SIS	SLOPE	4x6x7 Red	10	7	1	2
	Last (14) CHUSCHUC DIRG		- -	-				
IW Solv. Cont. Proc. Bldg. CS SLOPE 4x6x7 Rect 10 2 1 2 Corrosive HW Proc. Bldg. S/S DISH 8-10.5 12 3 4 12		- 00	CORL	-8 /	10		0.75	1.3
W Solv. Cont. Proc. Bldg. CS SLOPE 4x6x7 Rect 10 2 1 2 Corrosive HW Proc. Bldg. S/S DISH 8-10.5 12 3 4 12								3.5
Corrosive HW Proc. Bldg. S/S DISH 8 - 10.5 12 3 4 12								
	HW Solv. Cont. Proc. Bldg.	CS	SLOPE	4x6x7 Rect	10	2	1	2
	Corrocius HW Droc Plda	616	DIGH	8 - 10 F	19	2	A	19
Spent Acid Tank in Dike CS HORIZ 11 - 20LG 13 1 12 12	Contract title City.	949	PIOIT	o re.u	16	<u> </u>	64	16
	Spent Acid Tank in Dike	cs	HORIZ	11 - 201 G	13	1	12	12
	were whose a mean on service			r n un tur tur tur		-		
TAL CAP. OF PLANNED PERMITTED HAZARDOUS WASTE TANKS FOR SITE, M gal. 549	TAL CAP. OF PLANNED PERMITT	ED HAZAI	RDOUS W	ASTE TANKS	FOR SITE, M	l gal.	1	549

Hazardous Waste Storage Tank Dikes - Containment Summary for Current Dikes

Calculated by taking the internal dike volume and subtracting the volumes of the pedestals and all but the largest tank from base to top of walf. Cone and Dish bottom tanks have no displacement within the dike. All outdoor dikes designed to contain the largest tank's contents plus four inches of rainfall minimum per OAC 3745-55-93(E)(1)(b).

Refer to Appendix D of each tank system's Exhibit for details of calculations.

	<	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DIKE DESIG	GNATION		>
		FEED &		4x3M Gal.	E. WHS. for	SPENT
ITEM	7-TANK	BTMS. **	F-1	Feed Tk.	DISPERSER	ACID
No. of Tanks in Dike	9	4	4	4	3	5
Largest Tank in Dike - Vol., gal.	21,000	16,000	15,000	2,900	2,000	12,000
Height of Dike Wall, ft.	3.00	3.8 & 2.6	3.17	1.50	0.38	2.67
Area of Dike, sq.ft.	2,970	615	918	275	6,424	1,265
Vol. , Top of Wall to Slab, cu.ft.	8,910	1,924	2,907	413	450	3,374
Volume of Pedestals, cu.ft.	568	N/A	95	N/A	See Below ***	109
Volume of Any Raised Concrete Slab, cu.ft.	663	N/A				
Volume of all but Largest Tank Below Top of Wall, cu.ft.	1,340	N/A				594
Net Volume for Containment, cu.ft.	6,339	1,924	2,812	413	4 50	2,671
Volume of 4 inches Rainfall, cu.ft. *	1,081	256	359	N/A	N/A	481
Capacity of Largest Tank, cu.ft.	2,807	2,139	2,005	388	267	1,604
Required Containment, cu.ft.	3,888	2,395	2,364	388	267	2,085
Cont. OVER Req'd Amt., cu.ft.	2,451	1,979	448	25	183	586
Exhibit where Details for Calculations are Found.	Exhibit D-2	Exhibit D-10	Exhibit D-6	Exhibit D-7	Exhibit D-8	Exhibit D-9

^{*} Rainfall Area Includes the Top-of Wall Aera.

^{**} Feed & Btms. Tank dike wall was notched at top of common wall to Exist. 7-Tank Dike to get required containment.

Refer to text under "Spill Containment Volume for Dikes" in Section D for discussion and Appendix B of Exhibit D-10.

^{***} Used only aisle space to demonstrate more than required containment available.

CONTAINMENT CALCULATIONS FOR H.W	CONTAINER STO	RAGE AREAS AND	UNLOADING DO	CK AREAS.		
Calculations take the internal containment area b						
volume are also included. Then, the displacement		major displacemen	ts are subtracted fro	m the total volume to	get the Net Contains	nent Volume
available with the maximum permitted storage or				<u></u>		
Truck Unloading Dock Areas are designed to co						ity.
The volume of a typical pallet was calculated as		er, for containment	calculations, only the	portion of the pallet	below the top of the	<u> </u>
minimum height of the containment wall is consid	lered.					
	Na				***	
			PLANNED	PLANNED	PLANNED	PLANNED
			CONTAINER	CORROSIVE	SPENT SOLV.	CORROSIVE
	EAST	PROCESS	PROCESS	CONTAINER	UNLOADING	UNLOADING
ITEM	WAREHOUSE	BUILDING	BUILDING	BUILDING	DOCK AREA	DOCK AREA
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***********		*******
Length Inside Containment Area, ft.	92	80	119.33	72	60	24
Width Inside Containment Area, ft.	74	44	98	48	50	23.5
Height of Containment Area Curb, ft.	0.375	0.375	0.333	0.333	2.4	1.167
Containment Volume, cu.ft.	2,553	1,320	3,894	1,151	7,200	658
Reduced by Dikes, Other Items, cu.ft.	4444	334	661	***		*G *e 40
Added Volume Due to Slope, cu.ft.	N/A	N/A	1,282	288	900	469
Total Possible Containment Vol., cu.ft.	2,553	986	4,515	1,439	8,100	1,127
Maximum Number of Drums for Area	916	100	1500	500	N/A	N/A
Number of Pallets on Floor, * (55 gal. dms.)	114.5	25	187.5	62.5	N/A	N/A
Max. Number of Gallons for Bulk Truck, gal.	N/A	N/A	N/A	N/A	6,600	5,300
Volume of Pallets to Curb Min. Height, cu.ft.	99	21	135	45	==0	All rail for
Net Volume for Containment, cu.ft.	2,454	966	4,380	1,394	7,200	1,127
Converted to Gallons Containment Vol., gal.	18,360	7,224	32,765	10,426	53,863	8,432
Largest Haz. Waste Volume Available, gal.	50,380	5,500	82,500	27,500	6,600	5,300
Ten Percent Containment for Drums, gal.	5,038	550	8,250	2,750	N/A	N/A
Add 4" Rain Volume for Outside Areas, gal.	N/A	N/A	N/A	N/A	7,474	2,810
Required Containment Volume, gal.	5,038	550	8,250	2,750	14,074	8,110
Containment OVER Required Amount, gal.	13,322	6,674	24,515	7,676	47,263	322
* Pallets are normally stacked two high. This n	neans that eight drum	s occupy a single pa	llet area. Exception	is the Processing Are	ea, ONE pallet high.	





# HUKILL CHEMICAL CORPORATION

VPARTB\SECCONT.OVG Rev. 8/9/98

PROFILE OF NO-FREE-LIQUIDS CONTAINER STORAGE AREA AND EAST CONTAINMENT PAD

PLAN SHEET 9

- KRICK ROAD

FRONT LAVIN AREA

HUKILL CHEMICAL CORPORATION VPARTB-9\PLANSIIA.DVG Rev. 8/5/94

ENTRANCE

AREA

Section D

AREA











ACID PLANT TANK FARM

PLAN SHEET 20



# References

[A] thru [F]	Sketches of Tanks Elevations by Exhibit Groups
[1]	Index of Tank Drawings and Sketches
[1.1] thru [1.12]	Drawings and Sketches of Individual Tanks
[2.1]	Chemical Engineers Handbook, Perry & Chilton, Page 6-96, Table 6-57
[2.2]	Chemical Engineers Handbook, Perry & Chilton, Page 6-97, Table 6-59
[3.1] thru [3.15]	Professional Service Industries Inc., Tank Wall Thickness Measurements Report No. 138-48041-001, Dated June 1994 and No. 138-48041-004, Dated Sept. 22, 1995
[4]	The Engineers Manual, Hudson, page 18, Equation 53
[5]	The Engineers Manual, Hudson, page 16, Equation 45
[6]	The Engineers Manual, Hudson, page 13, Equation 33
[7]	The Engineers Manual, Hudson, page 18, Equation 54
[8.1]	Manual of Steel Construction, 9th Edition, AISC, page 1-111
[8.2]	Ryerson Stock List Catalogue, page 217
[9]	Manual of Steel Construction, AISC, 9th Edition, page 4-5, Table 1-D
[10]	Sketch of Rivet Patterns Tanks V-114 thru V-614
[11]	Structural Engineering Handbook, Gaylord & Gaylord, Chapter 23
[12]	Manual of Steel Construction, AISC, 9th Edition, page 5-33, Paragraph B.2
[13]	Manual of Steel Construction, AISC, 9th Edition, page 5-75, Eq. J3-6

### References

[14]	Index of Dike Wall Drawings & Sketches
[14.1] thru [14.3]	Drawings and Sketches of Individual Dike Walls
[15]	Reinforced Concrete Design Handbook, ACI Publication SP-3, page 85, Table 35
[16]	Reinforced Concrete Design Handbook, ACI Publication SP-3, page 81, Table 1
[17]	Manual of Steel Construction, 9th Edition, AISC, pages as noted.
[18]	Equations for Retaining Wall Design
[19]	Pressure Vessel Handbook, 3rd Edition, Eugene F. Megyesy, pages as noted
[20a] [20b]	Extrapolation of Values, Pressure Vessel Handbook, 3rd Edition, Eugene F. Megyesy, page 76
[21]	Report of Soils Investigation by EDP/Triggs Consultants, Inc., dated July 7, 1988
[22]	Chemical Engineers Handbook, Fifth Edition, pages as noted.
[23]	Formulas for Stress and Strain, Fifth Edition, Roark and Young, pages as noted.

#### 7 Tank Dike System - Tanks V-114 thru V-614; V-120; V-4000C; V-1500C

#### Exhibit D-2





# BTMS/Feed Tanks Tanks East 6/M; West 6/M; V-117

#### Exhibit D-10

# TANKS: EAST / GM WEST / GM

# TANK BTMS V-117





D.L. = DEAD LOAD WEICHT OF TANK

LILI = LIVE LOPO WEIGHT OF CONTAINED LIGSID

#### <u>F-1 Fuels Dike</u> Tanks V-110; V-210; V-6000; 13-15M

#### Exhibit D-6



#### 4 X 3M Feed Tanks Tanks 8-3-F thru 11-3-F

#### Exhibit D-7

# TANKS 8-3-F, 9-3-F, 10-3-F & 11-3-F



D.L. = DEAD LOAD WEIGHT OF TANK

L.L.: LIVE LOAD WEIGHT OF LIQUID

#### Disperser Tank

#### Exhibit D-8

## DISPERSER TANK



D.L = DEAD LOAD
WEIGHT OF TONK

L.L. = LIVE LOAD
WEIGHT OF LIQUO

#### Spent Acid Tank

#### Exhibit D-9

# SPENT ACID TANK



DILI SOEND LOND WEIGHT OF THNK

> WEIGHT OF LIGUID



 $[\pm]$ 

# Index of Tank Drawings and Sketches

Dike I.D.	Exhibit	Tank Elevatio Sketch Sheet	n <u>Tanks</u>	Ref.	Drawing Description
7 Tank Dike	D-2	[A]	V-114 thru V-614	[1.1]	H.C.C. Sketch
			V-120-SS V-4000C V-1500C	[1.2] [1.3] [1.3]	H.C.C. Reduced Drawing H.C.C. Sketch H.C.C. Sketch
BTMS/Feed	D-10	[B]	East/6M	[1.4a]	H.C.C. Reduced Drawing Plan Sheet 14
			West/6M	[1.4b]	H.C.C. Reduced Drawing
			V-117	[1.5]	Plan Sheet 15 R.A.D. Tank & Welding Co. Inc. Reduced Sketch Plan Sheet 13
F-1 Fuels Dike	D-6	[C]	V-110 V-120 V-6000C 13-15M	[1.6] [1.7] [1.8] [1.9a]	H.C.C. Sketch H.C.C. Reduced Drawing H.C.C. Sketch Hamilton Tank Reduced Drawing
				[1.9b]	H.C.C. Sketch
4X3M Feed Tanks	D-7	[D]	8-3-F thru	[1.10a]	Hamilton Tank Reduced Drawing
			11-3-F	[1.10b]	Enlarged Elevation
Disperser Tank	D-8	[E]	Dispr. Tanl	[1.11]	H.C.C. Sketch
Spent Acid Tank	D-9	[F]	Spent Acid	[1.12a]	12,000 Gal. Horizontal Vessel Drawing Part B, Book 2, Plan Sheet 19
				[1.12b]	Partial Drawing Foundation & Supports Plan Sheet 21

Section D - Exhibit D-2

(Constructed of 3/8° C.S. Plate with 3/4° Rivets)

(Constructed of 3/8° C.S. Plate with Scale: 1/4° = 1'



Hukill Chemical Corporation \PARTB-ID\90DATKS.GCD Rev. 9/5/95 Scale: 1 = 3'



[1.4a



[1.46]







	Nozzle So	chedule						
M _A R _K	DESCRIPTION	Z > C	PROJ.	REMARKS				
Α	24" STD. PRESSED MANHOLE	1	6"	EXTENDED W/ LONG BOLTS				
В	18" MANHOLE RING	1		W/ COVER				
С	12" 150° SLIP ON FLANGE	1	6"	GUSSETED				
D	3" 150° SLIP ON FLANGE	1	6"	VENT				
Ε	3" 150° SLIP ON FLANGE	1	6"	OVERFLOW				
F	3" 150° WELD NECK FLANGE	1	2¾"	IN MANHOLE COVER				
G	3" 150° SLIP ON FLANGE	2	6"					
Н	3" 150" SLIP ON FLANCE	1	6"					
ı	1/4" 150° HALF COUPLING	2		LEVEL GUAGE				
7	1/2" 150° HALF COUPLING	1	+-	LEVEL GUAGE				

#### Notes:

- T. ALL MATERIAL TO H.R. CARBON STEEL
- 2. DESIGN AND OPERATING PRESSURE ATMOSPHERIC.
- 3. ALL BOLT HOLES TO STRADDLE FITTING CENTERLINES.
- 4. ESTIMATED WEIGHT EMPTY 12,438.

  5. TANK TO BE BUILT & LABELED PER U.L. SPEC. -142.

T. MULKA TANK V210M NOTED TANK AS BUILT DRAWING 1819-T1







### V-6000C STORAGE TANK

(Tank No. 166)

NOTE: Tank sides and come constructed of 1/4 inch carbon steel. Orig. built as an open top tank. Top welded on at a later date.

HUKILL CHEMICAL CORPORATION

PARTS-5\V6688CTK.GUD Rev. 6/9/94

Scale: [/4" . ["



15.000 GAL. 90-DAY GENERATOR TANK HUKILL TANK I.D. IS 13-15A \TANKS\15AHV.GCD 9/30/92 TANKS\15AHV.GCD

MILE LOW BUT DESIGNATION

ELEYATION







DETAIL I TYP, AT ALL JOINTS IN CONCRETE

#### Notes:

- 1. ALL CONCRETE CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE LATEST EDITIONS OF ACI-JO1, ACI-JO2 AND ACI-J16.
- CONCRETE COMPRESSIVE STRENGTH SHALL BE 4000 PSI AT 22 DAYS AND SHALL BE AIR ENTRAINED.
- REINFORCING STEEL SHALL BE ASTH A-615 GRADE 60 BAR. ENTEPT TIES AND STIRRUPS WHICH SHALL BE GRADE 60.
- 4. ALL REINFORCING SPLICES SHALL LAP A MINIMUM COLORS EAR DIAMETERS.
- 5. PROVIDE CORNER BARS IN WALLS TO MATCH MODIL WIA. WALL REINFORCING 16 BAR DIAMETER LAF.
- E. SET REINFORGING AS SHOWN: ALLOW : INCHES OF CLEAPANCE BETWEEN REINFORGING AND FINISHES CONCRETS SURFACES. ALLOW INCHES OF CLEARANCE BETWEEN THE REINFORGING AND CONCRETS WHESE CONCRETS IS AGAINST EARTH.
- 7. ANT SOIL IN A FOOTING EXCAVATION WHICH HAS BEEN EMPOSE: TO RAIF SURFACE RUN-OFF, FROST OF FREEZING SHALL BE REMOVED PRIOF TO FLACING CONCRETE.
- E. ALL EXCAVATIONS SHALL BE PROPERLY DE-WATERED.
- 9. CHAMFER ALL EXPOSED CONCRETE CORNERS 3/4 x 3/4.
- 10. BENCH MARK: ELEV. 982.58 "H" IN HYDRANT ON FIRE HYDRANT OPPOSITE HUNILL CHEMICAL.
- 11. REFERENCE DRAWING: FRANK B. KRAUSE & ASSOCIATES ORDER NC. 9615, SHEET 1 OF 1, DATED OCTOBER 6, 1988.





il					1			-,	,	τ-				
ŝł									<u> </u>	1_				Ţ
5		Bosc						$\top$		] _	· · · · · · · · · · · · · · · · · · ·	†		$\neg$
Ì.	<u> </u>	DRIGINAL ISSUE		į k.	1-17-9	1			i:	1		├	-	
ŧ.			DESCRIPTION	1 2	Tare !	MARK	DESCRIPTION	87	DATE	MARK	DESCRIPTION .	<del> </del>		_
						-				·	DIN, NOT NO	U DT	DATE	: .

S. M. Haw Associates Professional Engineers Clevetand, Ohio

HUKILL CHEMICAL CORP

T. MULKA DARE 1-92 EAST PAD HAZARDOUS WASTE TANK DIKE TO DIKE PLAN SECTIONS & DETAILS OF |-I7-91 1294-F1 Δ



_34"CHAMFER (TYP) FOR REINF. SEE SECT. A/SI LEGS 626.W 2.9 2 W 2.9 FOR REINF. 2-45 -T.46. CONTY. 2 - 5 5 T. 4 B. CONTIN. SECTION C SECTION A SECTION B 12" 1 10 F1

TANK DIKE FOUNDATION PLAN 4" + 1'-0

NOTE:

THIS DRAWING IS A COMPILATION OF INFORMATION OBTAINED BY FIELD MEASUREMENT AND FROM A SKETCH PREPARED BY MR. E. HUKILL ON OCTOBER 5, 1968.

IT IS BELIEVED TO BE A SUBSTANTIALLY TRUE REPRESENTATION OF THE DIKE, AS BUILT.

A ORIGINAL ISSUE LB 6-17-91

S. M. Haw Associates Professional Engineers Cleveland, Ohio

HUKILL CHEMICAL CORP. KRICK ROAD, BEDFORD, OHIO DATE HAW

12-41 FEED TANKS & BOTTOM TANKS AS NOTED DIKE PLAN & SECTIONS A 1700-F1





3.000 col. FEED TANKS (4) VHAAJLTON\3AFDTKS Rev. 4/4/95 Scale: 1/4" - 1"

	ΠΞA	SIZE	RATING	TYPE	MIL	PROJ IN	PROU OUT		DESCRIPT  VALL SZ :		VELD LEG	DIA NOZ 1	D SHI	FETURICS	NOTES
ļ		287	ULSTYLE	TANNAY	CS	VE	AS SHARL		258	24555			FILET	SEE CETAL 'A'	ROOF RANKAY
△		24	IT 21 ITE	ANNAY	CS	Vª	AS SHARL		258	24.8839			FLLET	SE LETAL B	SHELL ANNAY
Δ		5	HOLE	व्या	<u></u>		!						HONE	SE CETAL T	N TOP HEAD
Į,		<u> </u>	EMPT.G	SORF.	ce .	8	3"	STU	237	4588		Ī	FILLET/GRV.	SE DETAL TO	DRAIN
Δ.	<u>E</u>	5	EMPLE.	SORF.	CE	VE	5	STD	265	3580			FILLET	SEE OIL TEAP	
Δ,	<u> </u>	3	ED#LG	SORF.	CS.	V	6	210	235	3526				SEEDIL TAF	
Ļ	<u> </u>	2	STELVI.	HF.CP.	CS	VF						Ī		SE LETAL TO	



ALLED NOTE TO B ONG CARRET TYPE BY DETAIL TO. ACCES GRACOO DEEK PLATE TO TANK POUR.

1 D-IZ AMMAY W TO A 20 LE STYLE

DESCRIPTION

REVISIONS

RELEGATE BEAN LESS & BAFFLES

RELETATE ALL NOTE PER REV. DEL ADD AGITATOR SUPPORT PLATE & DETAIL TO.

		-DESIG	N DATA	<del>\</del>		
		I MATERIAL:	ALLOWAR E	STRESS 1	YPE TI	К
		TOP_XRIGHT_HEAD: HRES	1	<b>/</b> A	FÆ	7 G
		BOTTON_XLEFT_HEAD HRCS	N		CONE	7 G
		SHELL: MRCS	N	'A	PLATE	
		NOZZLES : A-885	N.	'A	SEE-	90
		STRUCTURAL: A-38				
		FLANCES A-SES	·		-	
		ELPLYCE STO AEROWAY,		····		
		CASKETS LIFE THE TEPLON A				
		HEAT TREATMENT YES NO DESIGN PRESSURE WATERDESS HORS THE SELFE WATERDESS HORS THE SELFE WATERDESS HE WATERDES	NEWY REDU		_	
		3. INTERIOR:				
		REPORT VELD SLAG AND WILLIA.				
		SWOSLAGT AND APPLY PALESTIC # 64955 &	eeno.			
		S. ALL BOLT HOLES TO STRATULE VESSEL NOT DESIGNED FOR PRE- ALL FITTINGS TO BE PROTECTED TOLERANCES: SHELL DIAMETER IL FLANCE LEVEL V- IX S. OLSTOPER HAS THE RESPONSOR, TY TO	MOE PIPING. FOR SHIPMEN OUT OF ROUND	T. INESS+/- (:		
		ON THIS DRAVING	30000.00	ł		
	;	E VESSEL CAPACITY IN GALLONS:	3 <b>220</b> 0/1:			
	;	ON THIS DAWING  & VESSEL CAPACITY IN GALLONS:  7. NOTES:  A CLAMITT: FUR IN-TANCS TI, T2, T3, & T4,  R TANCS TO BE ARE TESTED WITH WATER AND  C TANCS TO BEAR AND ACCURRENCE LIBER. ON	स्टब्स्ट स्टब्स्ट स्टब्स्ट स्टब्स्ट	EN.		
	A	ON THIS DAVING  & VESSEL CAPACITY IN GALLONS:  7. NOTES: A COMMITT: FUR IN-TIANS IL TO TE SE TA  R TAMES TO BE AN TESTED WITH WATER AND	SOM SIDE STUIT LT. SLONG COMMY!	EN.	UR.	
ΑD		ON THIS DAWING  6. VESSEL CAPACITY IN GALLOAS:  7. NOTES: A COMMITT: FUR IN-TANCS TI. T2. T3.6 TA. C TANCS TO BE AN MUSICIPED WITH MOST TO TO BE SHOPPED LICED FOR FUR INSTITUTE TO BE SHOPPED LICED FOR FUR INSTITUTE TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO SHOPPED FOR FUR	SOM SIDE STUIT LT. SLONG COMMY!	EN.	ur	
AD.	AP RP	ON THIS DAWING  6. VESSEL CAPACITY IN GALLOAS:  7. NOTES: A COMMITT: FUR IN-TANCS TI. T2. T3.6 TA. C TANCS TO BE AN MUSICIPED WITH MOST TO TO BE SHOPPED LICED FOR FUR INSTITUTE TO BE SHOPPED LICED FOR FUR INSTITUTE TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO SHOPPED FOR FUR	SOM SIDE STUIT LT. SLONG COMMY!	EN.	UR	,
Q.	/UP	ON THIS DAWING  6. VESSEL CAPACITY IN GALLOAS:  7. NOTES: A COMMITT: FUR IN-TANCS TI. T2. T3.6 TA. C TANCS TO BE AN MUSICIPED WITH MOST TO TO BE SHOPPED LICED FOR FUR INSTITUTE TO BE SHOPPED LICED FOR FUR INSTITUTE TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO BE SHOPPED LICED FOR FUR INSTITUTE  TO SHOPPED FOR FUR	SOM SIDE STUIT LT. SLONG COMMY!	EN.	DER.	
l l	ALP	ON THIS DAWING  & VESSEL CAPACITY IN GALLONS:  7. NOTES: A CLAMITITY FILE IN-TIANS IL 12 II & TA R THANK TO BE ARE TESTED WITH WITHER AND IC THANS TO BE ARE MAUFACTURES LIKEL ON IT THANK TO INCLUDE OF DEACH HAVE TON TO BE SHOPED LODGE FOR FIRED NATIONAL E TANK TO INCLUDE TANK CALEBRATION OWNT	SCIAN BA CLUBSES	I STAPOARD LAC	DER.	
_	₽₽ ₽₽	ON THIS DAWING  & VESSEL CAPACITY IN GALLONS:  7. NOTES: A CLAMITITY FILE IN-TIANS IL 12 II & TA R THANK TO BE ARE TESTED WITH WITHER AND IC THANS TO BE ARE MAUFACTURES LIKEL ON IT THANK TO INCLUDE OF DEACH HAVE TON TO BE SHOPED LODGE FOR FIRED NATIONAL E TANK TO INCLUDE TANK CALEBRATION OWNT	SOM SIDE STUIT LT. SLONG COMMY!	I STAPOARD LAC	DER.	

Tanks <del>⋒</del> VESSEL DESCRIPTION:
3000 GALLON VERTICAL STORAGE TANKS
DATE NAME CLISTOPER:
HIGH DEFAICA CORPORATION PE DATE 2-22 PLE NOWS HUSBOARD

[1.10a]



15 M FUELS TANK



NOTES:

15.000 GALLON VORKING CAPACITY, AGITATED STORAGE TANK FOR FLAMABLE LIQUID STORAGE.

TANK TO BE OF CARBON STEEL CONSTRUCTION.

ALL NOZZLES TO BE SCHEDULE BO CARBON STEEL. ALL NOZZLES TO BE 3' LONG UNLESS NOTED.

AGITATOR NOZZLE TO MATCH THE VENDOR'S SEAL DESIGN FOR VAPOR TIGHT CONSTRUCTION.

AGITATOR/MOTOR VEIGHT IS 3.700 POUNDS.

DESIGN SUPPORT LEGS FOR TANK AND AGITATOR VEIGHT PLUS 15.900 GAL. OF 84 LE./CU.FT. LIOUID.

PROVIDE OSHA REQUIRED RAILING AROUND THE TOP OF THE TANK VITH ENTRANCE AT 270° POINT FOR STAIRVAY ATTACHAENT.

HUKILL CHEMICAL CORP \HVFUELS\15MTANK.DVG

Rev. 3/4/92

Scale: 3/16" = 1



3.000 gal. FEED TANKS [4]

\HAMILTON\3MFDTKS Rev. 4/4/95





PIPE IDENTIFICATION

A = 6' Dis.X 4' Long

B = 4' Dis.X 4' Long

C = 6' Dis.X 4' Long

D = 4' Dis.X 4' Long

E = 1 1/2' X 4' Long

F = 1' Holf Coupling

G = 1' Holf Coupling

HUKILL CHEMICAL CORPORATION

7013 KRICK ROAD, BEDFORD, OH 44146 \PARTB-9\DISPERTK.GCD Rev. 7/27/94 Scole: 3/8" • L' Drawing of

Spent Acid Tank

is located in

Part B Application

Plan Sheets - Book 2 Revision 5, 1/92

Plan Sheet 19



6-96

vessel, and signed by the fabricator and by the authorized inspector. Copies of these reports are always sent to the vessel owner. If the vessel is to be registered with the National Board, the board receives two copies of each (see also p. 6-92), one of which it forwards to the Code authority in the state where the vessel will be installed.

Materials of Construction. Subsection C, Requirements Pertaining to Classes of Materials, deals with allowable stresses and other requirements which are dependent upon the material. With certain exceptions, it requires that all materials subject to stress in Code vessels shall conform to one of the specifications given in Section II (Material Specifications) of the Boiler and Pressure Vessel Code. Subsection C is divided into the following parts:

UCS-Carbon and low-alloy steels

UNF-Nonferrous materials

UHA—High-alloy steels

UCI-Cast iron

UCL-Integrally clad plate or corrosion-resistant linings

UCD-Cast ductile iron

UHT-Ferritic steels with properties enhanced by heat treatment Part UNF tabulates some mechanical and physical properties that are not readily found elsewhere.

Tables 6-57 through 6-59 show the allowable stresses at several

temperatures for some of the more frequently used materials in Parts UCS, UNF, and UHA. Materials are not approved for temperatures outside the ranges shown in the Code.

Fabrication Methods. Subsection B, Requirements Pertaining to Methods of Fabrication of Pressure Vessels, is divided into the following parts:

UW-Welded vessels

UR-Riveted vessels

UF-Forged vessels

UB—Brazed vessels

Welding is almost universally employed for fabrication of pressure vessels. Forged vessels are generally used for high pressures where shell thickness becomes too great for rolled and welded plate construction. Brazing is used mainly for small vessels in quantity production, although the Code does not place any limit on their size.

Welded vessels (discussed in Part UW) may be fabricated from any Code-approved materials that are proved to be of good weldable quality. The welding procedure must be qualified in accordance with Section IX. Section IX also requires that each welder pass qualification tests for each particular type of welding or welding machine operation in which he is involved. Usually, steels with less than 0.35 per cent carbon can be welded without difficulty,

Table 6-57. Maximum Allowable Stress Values in Tension for Carbon and Low-alloy Steels Values in pounds per square inch

A.S.M.E.			Spec. min.	20-10-		For temperat	ures not exce	sung r.		44.1
Specification No.	Grade	Nominal composition	tensile strength	-20 to 650	700	800	900	1000	1100	1200
Plates Carbon Steel SA515	55	C-Si	55,000	13,700	13,200	10,200 12,000	6,500 6,500	2,500 2,500		rola Fi ak
SA515 SA516	70 55 70	C-Si C-Si C-Si	70,000 55,000 70,000	17,500 13,700 17,500	16,600 13,200 16,600	10,200 12,000	6,500 6,500	2,500 2,500		∴ib Lib
> SA516 SA285 SA285	A B		45,000 50,000 55,000	11,200 12,500 13,700	11,000 12,100 13,200	9,000 9,600 10,200	6,500 6,500 6,500			ai I x
SA285 Low-alloy Steel	С						6,500	2,500		75,88 21,2
SA202 SA202 SA387	A B D*	Cr-Mn-Si Cr-Mn-Si 2½ Cr-1 Mo =	75,000 85,000 60,000	18,700 21,200 15,000	17,700 19,800 15,000	12,600 12,800 15,000	6,500 13,100	2,500 7,800	4,200	1,60
Seamless Pipes an	ıd Tubes									1.257
Carbon Steel SA53 SA53	A B		48,000 60,000	12,000 15,000	11,600 14,300	9,300 10,800	6,500 6,500		٠.	. 191 . 794 
Low-alloy Steel SA213	T22	2½ Cr-1 Mo	60,000	15,000	15,000	15,000	13,100	7,800	4,200	1,60
Forgings Carbon Steel			60,000	15,000	14,300	10,800	6,500	2,500		2
SA105 SA105	II .		60,000 70,000	17,500	16,600	12,000	6,500	2,500		:
Low-alloy Steel SA182 SA372	F22 IV	2½ Cr-1 Mo 0.25 Mo	70,000 105,000	17,500 26,200 to 2	17,500 4,600 (when	17,500 normalized or	14,000 normalized a	7,800	4,200	1,60
Castings		-	:							-
Carbon Steel SA216 SA216	WCA WCB		60,000 70,000	15,000 17,500	14,300 16,600	10,800 12,000	6,500 6,500	2,500 2,500		
Low-alloy Steel SA217	WC9	2½ Cr-1 Mo	70,000	17,500	17,500	17,000	14,000	7,800	4,200	1,6
Bolting Carbon Steel			E= 000	7,000	(not peru	nitted above 4	50°F.)			
SA307 Low-alloy Steel	В		55,000	1,000			5			
SA 193 SA 193	B7† B16†	1 Cr-0.2 Mo 1 Cr-0.5 Mo	· ?	25,000 25,000	25,000 25,000	21,000 25,000	12,500 20,500	4,500 11,000	2,700	<u></u>
*Annealed. †	Under 2½	in. diameter.			,					
										Γ

^{*}Annealed. † Under 2½ in. diameter.

Table 6-58. Maximum Allowable Stress Values in Tension for Aluminum and Aluminum-alloy Products

Values in pounds per square inch

A.S.T.M. alloy			Specified minimum	Specified minimum		F	or temperat	ures not ex	ceeding °F.		
desig- nation	Temper	Thickness, in.	tensile strength	. yield strength	100	150	200	250	300	350	400
Sheet and P	late: A.S.M.	E. Specification No.	SB-209								
1060	0	0.051-3.000	8,000	2,500	1,600 .	1,600	1,600	1,400	1,200	1,000	800
7.	H12	0.051-2.000	11,000	9,000	2,700	2,700	2,600	2,300	2,000	1,800 1.800	1,100
	H14	0.051-1.000	12,000	10,000	3,000	3,000	3,000	2,900	2,600 1,800	1,600	1,100 1,000
	H112	0.250-0.499	11,000	7,000	2,700	2,600	2,400 2,100	2,000 1,900	1,600	1,400	1,000
	H112	0.500-1.000	10,000	5,000	2,500	2,400 2,100	1,900	1,700	1,400	1,000	800
5 to 10 to 1	H112	1.001-3.000	9,000	4,000	2,200	ł .					
5052	0	0.051-3.000	25,000	9,500	6,200	6,200	6,200	6,200	5,600	4,100	2,300
7.5	- H32	0.051-2.000	31,000	23,000	7,700	7,700	7,700	7,500	6,100	4,100	2,300
•	H34	0.051-1.000	34,000	26,000	8,500	8,500	8,500	8,400	6,100	4,100	2,300
	H112	0.250-0.499	28,000	16,000	7,000	7,000	7,000	7,000	6,100	4,100	2,300
	H112	- 0.500-3.000	25,000	9,500	6,200	6,200	6,200	6,200	6,000	4,100	2,300
5456	0	0.051-1.500	42,000	19,000	10,500	10,500					
V 173	0	1.501-3.000	41,000	18,000	10,200	10,200					
₹	H321	0.188-1.250	46,000	33,000	11,500	11,500					
•	H321	1.251-1.500	44,000	31,000	11,000	11,000				·	
A. 1995	H321	1.501-3.000	41,000	29,000	10,200	10,200					
Rods. Bars.	and Shapes:	A.S.M.E. Specificat	ion No. SB-221							,	
1060	0, H112	All	8,500	2,500	1,600	1,600	1,600	1,400	1,200	1,000	800
F											
		A.S.M.E. Specification	on SB-210	0 =00	2.000	1 600	1.600	1,400	1,200	1,000	800
1060	0, H112	0.010-0.500	8,500	2,500	1,600	1,600 3,000	3,000	2,900	2,600	1,800	1,100
e winds.	H14	0.010-0.500	12,000	10,000	3,000	3,000	3,000	2,300	2,000	1,000	2,200
n Dalking 14-4	  amia7a, 4 € 3:	! f.E. Specification No	SB-211								
Soluting Mat	renaus: A.S.N   T6	0.125-8.000	65,000	55,000	13.000	12.200	11,600	10.400	7,200	4,400	3,000
× 2014	10	0.120-0.000	55,555	75,500							

Table 6-59. Maximum Allowable Stress Values in Tension for High-alloy Steels*

Values in pounds per square inch

JAS.M.E.		Nominal	Specified minimum tensile				For ter	nperature	s not exc	eeding °F				
Specification No.	Grade	composition	strength	-20 to 100	200	400	700	900	1000	1100	1200	1300	1400	1500
Plate Steels in SA-240 SA-240 F SA-240 SA-240	304 304Lf 310S 316	18 Cr-8 Ni 18 Cr-8 Ni '25 Cr-20 Ni 16 Cr-12 Ni- 2 Mo 13 Cr	75,000 70,000 75,000 75,000 65,000	18,700 15,600 18,700 18,700 16,200	15,600 13,300 16,900 16,100	12,900 10,000 14,900 13,300	11,000 9,300 12,700 11,300	10,100 11,600 10,800 10,400	9,700 9,800 10,600 6,400	8,800 5,000 10,300 2,900	6,000 2,500 7,400 1,000	3,700 700 <b>4,</b> 100	2,300 300 2,200	1,400 200 1,700
C Dartt.	bes-Welde TP304 TP410 B8 B6(410)		75,000 60,000 75,000 110,000	15,900 12,700 15,000 20,000	13,300 12,100 13,300 19,000	11,000 11,300 10,900 17,700	12,000 10,200 8,600 16,100	7,500 11,000	10,600 7,000	7,400 6,300	4,600	2,900 2,400	1,700 1,400	1,000 750

^{*}The Code gives several sets of stress values dependent on specific conditions (see Code Table UHA-23). 19000 lb./sq. in, at 800°F.

Post-weld heat treatment (usually stress relief) is required for some conditions, such as thick plate, low-temperature service, high carbon, and highly toxic contents.

The Code does not permit any welding to be done when the metal is below 0°F. Between 0° and 32°F., the metal adjacent to the weld must be heated to at least 60°F. before welding is started. It recommends that no welding be done when the surfaces are wet covered with ice, when snow is falling, or when exposed to high winds unless the work is adequately protected. Welding surfaces that so be free of grease, dirt, and slag.

The types of welds used for most longitudinal and circumferential points in pressure vessels are shown in Fig. 6-138. Table 6-60 shows allowable welded-joint efficiencies for the three welds shown in Fig. 8-138. Weld efficiency is the ratio of the allowable stress in the



Fig. 6-138. Weld types: (a) Double-welded butt joint, back-chipped before welding second side. (b) Single-welded butt joint, with backing strip which may or may not be removed. (c) Single-welded butt joint, no backing strip (permitted only for certain circumferential welds).

### Structural Assessment of a Hazardous Waste Storage Tank for Hukill Chemical Company

#### 7 Tank Dike System - Tanks V-114 thru V-614 Exhibit D-2

Summary of Minimum Tank Wall Measurements Professional Service Industries, Inc. Report No. 138-48041-001 - Dated June, 1994

	<u>V-114</u>	<u>V-214</u>	<u>V-314</u>	<u>V-414</u>	<u>V-514</u>	<u>V-614</u>
PSI Report Sheet	[3.2]	[3.2]	[3.3]	[3.4]	[3.4]	[3.5]
Top 1	<u>225</u>	266	265	267	265	253
Top 2		262	262	249	250	[ 242]
Upper 1	225	259	256	244	253	254
Upper 2	238	266	266	262	252	250
Lower 1	276	297	286	276	274	2727
Lower 2	252	293	282	282	270	281
Bottom 1	260	299	285	289	276	282
Bottom 2	263	293	271	280	276	292

⁼ Critical Wall Thickness



TESTED FOR:

Hukill Chemical Corporation

PROJECT:

Tank Wall Thickness Measurements

7013 Krick Road

Bedford, Ohio 44146

DATE:

June 1994

OUR REPORT NO .:

138-48041-001

Note: On Vertical tanks - 0° On Horizontal tanks - 0° = 1 V-114 57-14F		NORTH 0°/360°	NORTH EAST 45°	EAST	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST 270°	NORTE WEST 315°
	ТОР	260	226	226	270	263	244	225	270
N TIW	UPPER	240 250		225 239		244 238		239 246	
U 1 2	LOWER	284 270		276 252		287 264	·	278 270	
1	воттом	282 264		260 268		278 278		267 263	

e: On Vertical tanks - 0° = On Horizontal tanks - 0° = To V214 58-14F	- North op	NORTH 0°/360°	NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST 270°	NORTH WEST 315°
¥214 33-141	TOP	271	265	273	274 277	·		266	266 262
N T W	UPPER	263	274	267 268	273	273 266		259 284	261
2	MIDDLE								
2	LOWER	298 296		297 293		298 307		308 311	
2 B 1 2	BOTTOM	299 296		309 293		308 297		306 298	
	CONE							<u></u>	1



TESTED FOR:

Hukill Chemical Corporation

PROJECT:

Tank Wall Thickness Measurements

7013 Krick Road Bedford, Ohio 44146

DATE:

June 1994

OUR REPORT NO .:

138-48041-001

Note: On Vertical tanks - 0°= On Horizontal tanks - 0°= To	p	NORTH 0°/360°	NORTH EAST 45°	EAST	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST 270°	NORT WEST 315°
V314 59-14-F	ТОР	265 280	**	270 262		280 269		297 266	
N S	UPPER	256 281		280 278		280 266		303 269	
1 2	MIDDLE								
0 1 2	LOWER	289 282		287 289		286 285		294 288	
L 1 B 1	воттом	285 271		286 284		305 300		292 288	
	CONE								
O W sind tonics O'	- North	NORTH	NORTH	EAST	SOUTH	SOUTH	SOUTH	WEST	NOR WES

			<u>,                                     </u>	<u> </u>					
Note: On Vertical tanks - 0° = On Horizontal tanks - 0° = To	North	NORTH	NORTH EAST 45°	EAST	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST 270°	NOR WES 315°
13-15-M	ТОР	0°/360° 251	1 42	249		258		254	<u> </u>
5 E N	UPPER	248		249		257		252	<u> </u>
	MIDDLE	247		253		252		253	
M	LOWER	250		257		246		379	+-
	воттом	387		386		379		3/9	
8	CONE				<u> </u>				<u></u>



TESTED FOR:

Hukill Chemical Corporation

7013 Krick Road Bedford, Ohio 44146 PROJECT:

Tank Wall Thickness Measurements

DATE:

June 1994

OUR REPORT NO.:

138-48041-001

	Note: On Vertical tanks - 0° = On Horizontal tanks - 0° = Top	North	NORTH	NORTH EAST	EAST	SOUTH EAST 135°	SOUTH	SOUTH WEST 225°	WEST 270°	NORT WEST 315°
-	V-414 60-14-F	TOP	0°/360° 274	45°	90° 277	133	276		267 258	
	W		249		263		257		244	
	T 1	UPPER	269 270		267 262		276 286		263	
		MIDDLE	,							
		LOWER	292 285		298 282		276 293		276 282	
1	8 1/2	воттом	289 282		299 280		289 297		299 280	
		CONE					<u> </u>		<u> </u>	
1			ì		EAST	SOUTH	SOUTH	SOUTH	WEST	NOR
				NORTH	1 1 1 1 1 1 1 1 1	POOTE	300111			1
	Note: On Vertical tanks - 0°=	North	NORTH	I		EAST		WEST		WES
	On Horizontal tanks - 0° = To	· North pp	0°/360°	EAST 45°	90°	EAST 135°	180°	WEST 225°	270°	315°
	On Horizontal tanks - 0° = To	TOP		EAST			180° 270 256		270° 268 252	
	On Horizontal tanks - 0° = To V-514 61-14-F	op	0°/360°	EAST	90°		270		268	
	On Horizontal tanks - 0° = To V-514 61-14-F	TOP	0°/360° 274 254 264	EAST	90° 265 250 265		270 256 255		268 252 253	
	On Horizontal tanks - 0° = To V-514 61-14-F  W  S  E  T  1  2  U  2	TOP UPPER	0°/360° 274 254 264	EAST	90° 265 250 265		270 256 255		268 252 253	
	On Horizontal tanks - 0° = To V-514 61-14-F  W  S  E  T  1  2  U  1	TOP UPPER MIDDLE	0°/360° 274 254 264 253	EAST	90° 265 250 265 252 274		270 256 255 289 276		268 252 253 256	

Respectfully submitted, PROFESSIONAL SERVICE INDUSTRIES, INC. C. Hubbuch

CONE



TESTED FOR:

Hukill Chemical Corporation

7013 Krick Road Bedford, Ohio 44146 PROJECT:

Tank Wall Thickness Measurements

DATE:

June 1994

OUR REPORT NO .:

138-48041-001

1771110									
Note: On Vertical tanks - 0°=	North	NORTH	NORTH EAST	EAST	SOUTH	SOUTH	SOUTH WEST	WEST	NORTH WEST
$1 \circ 1$	)	0°/360°	45°	90°	135°	180°	225°	270°	315°
53-5.6-CL East Feed	TOP	263 267		268 272		258 258		262 261	
3 F 1	UPPER								
2	MIDDLE								
Bi	LOWER							267	
C.	воттом	269 268		265 266		265 256		259	
	CONE	250		252		257		251	
	1 0 0	1				COLLEG	FUIDE	WEST	NORT

	CONE			<u> </u>					
Note: On Vertical tanks - 0° =	°= North Top	NORTH 0°/360°	NORTH EAST 45°	EAST	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST	NORT WEST 315°
V-614 62-14-F	TOP	256 243		276 242		270 249		253 243	
S E UPPE	UPPER	266 260		264 252		262 258		254 250	
Tall	MIDDLE								
U 2	LOWER	287 289		282 284		274 285		272 281	
B 1/2	воттом	287 304		284 292		288 298		282 295	
	CONE			<u> </u>					1



TESTED FOR:

Hukili Chemical Corporation

7013 Krick Road Bedford, Ohio 44146 PROJECT:

Tank Wall Thickness Measurements

DATE:

June 1994

OUR REPORT NO .:

138-48041-001

Note: On Vertical tanks - 0° = On Horizontal tanks - 0° = To V-120 SS 56-20-CL		NORTH 0°/360°	NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH	SOUTH WEST 225°	WEST	NORTH WEST 315°
5 E	TOP	207		202		213		202	
7	UPPER	212		211		210		208	
U	MIDDLE	217		203		210		212	
M	LOWER	204		204		202		206	
71	воттом	208		205		205		214	
3	CONE								
Note: On Vertical tanks - 0° = North On Horizontal tanks - 0° = Top									
		NORTH 0°/360°	NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH	SOUTH WEST 225°	WEST	NORTH WEST 315°
On Horizontal tanks - 0° = To 1500 Cone 75-1.5-F			EAST		EAST		WEST		WEST
On Horizontal tanks - 0° = To 1500 Cone 75-1.5-F	p	0°/360°	EAST	90°	EAST	180°	WEST	270°	WEST
On Horizontal tanks - 0° = To 1500 Cone 75-1.5-F	TOP	0°/360°	EAST	90°	EAST	180°	WEST	270°	WEST
On Horizontal tanks - 0° = To 1500 Cone 75-1.5-F  W  F  N	TOP UPPER	0°/360°	EAST	90°	EAST	180°	WEST	270°	WEST
On Horizontal tanks - 0° = To 1500 Cone 75-1.5-F  W  S  E  N	TOP UPPER MIDDLE	0°/360°	EAST	90°	EAST	180°	WEST	270°	WEST



TESTED FOR:

Hukill Chemical Corporation

7013 Krick Road Bedford, Ohio 44146 PROJECT:

Tank Wall Thickness Measurements

DATE:

June 1994

OUR REPORT NO .:

138-48041-001

· ·			NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST	NORT WEST 315°
5 E N	TOP	245 242		237 240		244 223		242 224	
1.	UPPER								
T	MIDDLE						-		
2.	LOWER								
C. 1	воттом								
2/	CONE	282 329		324 320		324 340		323 324	



TESTED FOR:

Hukill Chemical Corporation

7013 Krick Road Bedford, Ohio 44146 PROJECT:

Tank Wall Thickness Measurements

DATE:

June 1994

OUR REPORT NO .:

138-48041-001

Note: On Vertical tanks - 0° = On Horizontal tanks - 0° = To V117 55-16-CL	North P	NORTH 0°/360°	NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH	SOUTH WEST 225°	WEST 270°	NORT WEST 315°
W	ТОР	214 234		221 235		220 224	·	211 228	
S F N	UPPER	233 248		246 250		236 252		248 249	
2	MIDDLE								
	LOWER	249 251		258 254		254 256		250 244	
B 2	воттом	251 248		250 251		247 249		249 252	
[ c]	CONE	244 242		250 260		251 267		248 252	

Note: On Vertical tanks - 0° = On Horizontal tanks - 0° = To	P	NORTH 0°/360°	NORTH EAST 45°	EAST	SOUTH EAST 135°	SOUTH	SOUTH WEST 225°	WEST 270°	NORTH
52-5.6-CL West Feed 7	TOP	263 258		268 265		256 260		270 268	
1.	UPPER				<u> </u>				
T	MIDDLE					<u> </u>		<u> </u>	-
2.	LOWER							<u> </u>	
C. 1	воттом	260 257		262 257		262 257		260 -254	
	CONE	263		253		250	<u> </u>	265	<u> </u>



TESTED FOR:

Hukill Chemical Corporation

rporation PROJECT:

Tank Wall Thickness Measurements

7013 Krick Road

Bedford, Ohio 44146

DATE:

June 1994

OUR REPORT NO .:

138-48041-001

Note: On Vertical tanks - 0° = N On Horizontal tanks - 0° = Top V-6000-C 16-6-M	lorth _	NORTH 0°/360°	NORTH EAST 45°	EAST	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225° -	WEST 270°	NORT WEST 315°
	TOP	262 256		258 266		240 238		268 243	
	UPPER								
	MIDDLE		,						
3.	LOWER								
2.	воттом								
	CONE	256 252		248 249		250 252		240 250	,
				т	<u> </u>	T .	T		T
Note: On Vertical tanks - 0°= 1	North	NORTH	NORTH EAST	EAST	SOUTH	SOUTH	SOUTH WEST	WEST	NOR WES
On Horizontal tanks - 0° = Top V-110 M 15-10-M	<del></del>	0°/360°	45°	90°	135°	180°	225°	270°	315°
S W	TOP	258		267		258		276	
1	UPPER	271		271		267		270	
	MIDDLE								
	LOWER	263		260		270		290	
	воттом	272		268		286		290	
8	CONE								



TESTED FOR:

Hukill Chemical Corporation

7013 Krick Road

Bedford, Ohio 44146

PROJECT:

Tank Wall Thickness Measurements

DATE:

June 1994

OUR REPORT NO .:

138-48041-001

Note: On Vertical tanks - 0°= On Horizontal tanks - 0°= To	North P	NORTH	NORTH EAST 45°	EAST	SOUTH EAST 135°	SOUTH	SOUTH WEST 225°	WEST 270°	NORTI WEST 315°
V-210-M 14-10-M T	TOP	0°/360° 245 240	1 **	251 249		261 250		257 242	
	UPPER								
	MIDDLE			<u> </u>					
I d B h	LOWER			<u> </u>				259	
	воттом	264		255	<u> </u>	265			+
CONE		310 313		323 311		318 296		322 325	

### Structural Assessment of a Hazardous Waste Storage Tank for Hukill Chemical Company

#### 4 x 3M Feed Tank System - Tanks 8-3-F thru 11-3-F Exhibit D-7

Summary of Minimum Tank Wall Measurements Professional Service Industries, Inc. Report No. 138-48041-004 - Dated September 22, 1995

	<u>8-3-F</u>	9-3-F	<u>10-3-F</u>	<u>11-3-F</u>
PSI Report Sheet	[3.14]	[3.12]	[3.12]	[3.13]
Top 1 Top 2	165 154	167 165	157 157	151 160
Bottom 1 Bottom 2	151 157	168 167	158 162	156 151
Cone	227	225	238	224

⁼ Critical Wall Thickness



TESTED FOR:

Hukill Chemical Corporation

PROJECT:

Tank Wall Thickness Measurements

7013 Krick Road Bedford, Ohio 44146

DATE:

September 22, 1995

OUR REPORT NO .:

138-48041-004

Note: On Vertical tanks - 0° = On Horizontal tanks - 0° = To 10-3-F		NORTH 0°/360°	NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH	SOUTH WEST 225°	WEST 270°	NORTH WEST 315°
S F N	TOP	160 159		158 168		158 162		157 157	
1 - 1.	UPPER								
2.	MIDDLE								
8 1.	LOWER								
⁶ 2.	воттом	158 162		170 170		160 166		161 165	
<u> </u>	CONE	238		240		239		239	
Note: On Vertical tanks - 0° = On Horizontal tanks - 0° = To 9-3-F		NORTH 0°/360°	NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST 270°	NORTH WEST 315°
5 N	TOP	168 165		169 166		167 170		172 169	
	UPPER			1					
2.	MIDDLE						!		
LO	LOWER								
H B 1	воттом	169		170		168	-	170	

Respectfully submitted,

PROFESSIONAL SERVICE INDUSTRIES, INC.
L. Mach

170

232

167

230

168

225

169

232

CONE



TESTED FOR:

Hukill Chemical Corporation

7013 Krick Road Bedford, Ohio 44146 PROJECT:

Tank Wall Thickness Measurements

DATE:

September 22, 1995

OUR REPORT NO.:

138-48041-004

Note: On Vertical tanks - 0° = North On Horizontal tanks - 0° = Top 11-3-F		NORTH 0°/360°	NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST 270°	NORTH WEST 315°
SC E DA	ТОР	159 160		151 160		154 160		156 165	
	UPPER								
2.	MIDDLE								
0 1:	LOWER								<u> </u>
B 2.	воттом	156 151		159 156		164 157		172 166	
	CONE	226		225		227		224	



TESTED FOR:

Hukill Chemical Corporation

7013 Krick Road Bedford, Ohio 44146 PROJECT:

Tank Wall Thickness Measurements

DATE:

September 22, 1995

OUR REPORT NO.:

138-48041-004

Note: On Vertical tanks - 0° On Horizontal tanks - 0° = 18-3-F	•	NORTH 0°/360°	NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST 270°	NORTH WEST 315°
S E N TOP	ТОР	169 154		165 155		168 167		173 155	
- ·	UPPER								
2.	MIDDLE								
<u>a l-</u>	LOWER								
2	воттом	157 161		165 157		156 161		151 165	
CONE		227		231		237		249	

Hockmeyer Mixer		NORTH 0°/360°	NORTH EAST 45°	EAST 90°	SOUTH EAST 135°	SOUTH 180°	SOUTH WEST 225°	WEST 270°	NORTH WEST 315°
5	тор	248 244		249 247		249 n/a		248 251	
T T.	UPPER								
2	MIDDLE								
8 3.	LOWER								
	воттом	243		250		258		243	
4.	CONE			254				257	

SPENT TANK #1786



The larger the value of n, the greater is the accuracy of approximation. In general, for the same number of chords,  $A_8$  gives the most accurate,  $A_7$ , the least accurate approximation.

#### 51 Cube

 $V = a^3$ ;  $d = a\sqrt{3}$ . Total surface = 6  $a^2$ .



### 52 Rectangular Parallelopiped

V = abc;  $d = \sqrt{a^2 + b^2 + c^2}$ . Total surface = 2 (ab + bc + ca).



#### FIG. 52.

### <del>----></del> 5

#### 53 Prism or Cylinder

V = (area of base) × (altitude). Lateral area = (perimeter of right section) × (lateral edge).



#### 54 Pyramid or Cone

 $V=\frac{1}{3}$  (area of base)  $\times$  (altitude). Lateral area of regular figure =  $\frac{1}{2}$  (perimeter of base)  $\times$  (slant height).



#### 55 Frustum of Pyramid or Cone

 $V = \frac{1}{3} (A_1 + A_2 + \sqrt{A_1 \times A_2}) h$ , where  $A_1$  and  $A_2$  are areas of bases, and h is altitude.

Lateral area of regular figure = ½ (sum of perimeters of bases) × (slant height).



43 Trapezium (no sides parallel)  $A = \frac{1}{2}(ah_1 + bh_2) = \text{sum of areas of 2 triangles.}$ 



{all sides equal } all angles equal} 44 Regular Polygon of n Sides

$$\beta = \frac{n-2}{n} \text{ 180}^{\circ} = \frac{n-2}{n} \pi \text{ radians.}$$

$$\alpha = \frac{360^{\circ}}{n} = \frac{2 \pi}{n} \text{ radians.}$$



Fig. 44.

n	a	r	R	A	
3	$2r\sqrt{3}=R\sqrt{3}$	1 a √3	- ⅓a√3	$\frac{1}{4} a^2 \sqrt{3} = 3 r^4$	$2\sqrt{3}$
	$2r = R\sqrt{2}$		$\frac{1}{2}$ a $\sqrt{2}$	$a^2 = 4r^2$	$ \begin{array}{c c} \mathbf{R}^2 \sqrt{3} \\ \mathbf{R}^2 = 2 \mathbf{R}^2 \end{array} $
1	-	½ a √3		$\frac{3}{2} a^2 \sqrt{3} = 2 r^2  = \frac{3}{2} R^2$	$2\sqrt{3}$
8	$2 \operatorname{r} (\sqrt{2} - 1) = \operatorname{R} \sqrt{2 - \sqrt{2}}$	$\frac{1}{2}a(\sqrt{2}+1)$		$2 a^2 (\sqrt{2} + 1) = 8 r^2$ = 2 R	
n	_	$\frac{a}{2}\cot\frac{a}{2}$	a csc <del>c</del> 2 csc <del>-</del> 2 .	4 -	tan a
	$= 2 \operatorname{R} \sin \frac{\alpha}{2}$			<u>nR</u>	sin c

45 Circle 
$$\begin{cases} C = \text{circumference} \\ α = \text{central angle in radians} \end{cases}$$
  
 $C = \pi D = 2 \pi R.$ 

$$c = Ra = \frac{1}{2} Da = D \cos^{-1} \frac{d}{R} = D \tan^{-1} \frac{1}{2 d}$$

$$I = 2\sqrt{R^2 - d^2} = 2R\sin\frac{\alpha}{2} = 2d\tan\frac{\alpha}{2} = 2d\tan\frac{c}{D}$$



$$d = \frac{1}{2} \sqrt{4 R^2 - l^2} = \frac{1}{2} \sqrt{D^2 - l^2} = R \cos \frac{\alpha}{2} = \frac{1}{2} l \cot \frac{\alpha}{2} = \frac{1}{2} l \cot \frac{c}{D}.$$

$$h = R - d$$

$$h = R - d.$$

$$\alpha = \frac{c}{R} = \frac{2 c}{D} = 2 \cos^{-1} \frac{d}{R} = 2 \tan^{-1} \frac{1}{2 d} = 2 \sin^{-1} \frac{1}{D}.$$

$$A(circle) = \pi R^2 = \frac{1}{4} \pi D^2 = \frac{1}{2} RC = \frac{1}{4} DC.$$

A(sector) = 
$$\frac{1}{2}$$
 Rc =  $\frac{1}{2}$  R² $\alpha = \frac{1}{3}$  D² $\alpha$ .

#### 32 Properties of Plane Triangles

Notation. a,  $\beta$ ,  $\gamma$  = angles; a, b; c = sides. A = area;  $b_b$  = altitude on b;  $s = \frac{1}{2}(a + b + c)$ . r = radius of inscribed circle; R = radius of circumscribed circle.

$$\alpha + \beta + \gamma = 180^{\circ} = \pi \text{ radians}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$\frac{a+b}{a-b} = \frac{\tan \frac{1}{2} (\alpha + \beta)}{\tan \frac{1}{2} (\alpha - \beta)} \cdot *$$

$$a^2 = b^2 + c^2 - 2 bc \cos \alpha$$
,  $a = b \cos \gamma + c \cos \beta$ .

$$\cos \alpha = \frac{b^2 + c^2 - a^2}{2 bc}, \quad \sin \alpha = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}.$$

$$\sin \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}, \cos \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}}, \tan \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \frac{r}{s-a}.$$

$$\tan\frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \frac{r}{s-a}.$$

$$h_b = c \sin \alpha^* = a \sin \gamma^* = \frac{2}{b} \sqrt{s (s-a)(s-b)(s-c)}.^*$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = (s-a) \tan \frac{a}{2}$$

$$R = \frac{a}{2 \sin a} = \frac{abc}{4 A}$$

$$A = \frac{1}{2} bh_b^* = \frac{1}{2} ab \sin \gamma^* = \frac{a^2 \sin \beta \sin \gamma^*}{2 \sin \alpha}^* = \sqrt{s(s-a)(s-b)(s-c)} = rs.$$

#### 33 Solution of the Right Triangle

Given any two sides, or one side and any acute angle, a, to find the remaining parts.

$$\sin \alpha = \frac{a}{c}$$
,  $\cos \alpha = \frac{b}{c}$ ,  $\tan \alpha = \frac{a}{b}$ ,  $\beta = 90^{\circ} - \alpha$ .

$$a = \sqrt{(c+b)(c-b)} = c \sin \alpha = b \tan \alpha$$

$$b = \sqrt{(c+a)(c-a)} = c \cos \alpha = \frac{a}{\tan \alpha}$$

$$c = \frac{a}{\sin a} = \frac{b}{\cos a} = \sqrt{a^2 + b^2}.$$

$$A = \frac{1}{2} ab = \frac{a^2}{2 \tan \alpha} = \frac{b^2 \tan \alpha}{2} = \frac{c^2 \sin 2 \alpha}{4}$$



* Two more formulas may be obtained by replacing a by b, b by c, c by a,  $\alpha$  by  $\beta$ ,  $\beta$  by  $\gamma$ ,  $\gamma$  by  $\alpha$ .

(Simpson's Rule, where n is even). The larger the value of n, the greater is the accuracy of approximation. In general, for the same number of chords,  $A_{\tilde{s}}$  gives the most accurate,  $A_{\tilde{t}}$ , the least accurate approximation.

#### 51 Cube

 $V = a^3$ ;  $d = a\sqrt{3}$ . Total surface = 6  $a^2$ .



#### 52 Rectangular Parallelopiped

 $V = abc; d = \sqrt{a^2 + b^2 + c^2}.$ Total surface = 2 (ab + bc + ca).



Fig. 52.

#### 53 Prism or Cylinder

V = (area of base) × (altitude). Lateral area = (perimeter of right section) × (lateral edge).



#### ◆ 54 Pyramid or Cone

 $V=\frac{1}{3}$  (area of base)  $\times$  (altitude). Lateral area of regular figure =  $\frac{1}{2}$  (perimeter of base)  $\times$  (slant height).



#### 55 Frustum of Pyramid or Cone

 $V = \frac{1}{3} (A_1 + A_2 + \sqrt{A_1 \times A_2}) h$ , where  $A_1$  and  $A_2$  are areas of bases, and h is altitude.

Lateral area of regular figure = ½ (sum of perimeters of bases) × (slant height).



# WEIGHT OF RECTANGULAR SECTIONS Pounds per linear foot

147.44		· · · · · · · · · · · · · · · · · · ·			<del></del>	Ŧ	hicknes	s, Inch	es			a		T-10-M-1004
Width In.	3/18	1/4	5/16	3/8	7∕16	1/2	9/16	5/a	11/18	3/4	13/18	7/a	15/16	1
1/4	0.16	0.21	0.27	0.32	0.37	0.43	0.48	0.53	0.58	0.64	0.69	0.74	0.80	0.85
1/2	0.32	0.43	0.53	0.64	0.74	0.85	0.96	1.06	1.17	1.28	1.38	1.49	1.60	1.70
3/4	0.48	0.64	0.80	0.96	1.12	1.28	1.44	1.60	1.75	1.91	2.07	2.23	2.39	2.55
1	0.64	0.85	1.06	1.28	1.49	1.70	1.91	2.13	2.34	2.55	2.76	2.98	3.19	3.40
11/4	0.80	1.06	1.33	1.60	1.86	2.13	2.39	2.66	2.92	3.19	3.46	3.72	3.99	4.25
11/2	0.96	1.28	1.60	1.91	2.23	2.56	2.87	3.19	3.51	3.83	4.15	4.47	4.79	5.10
13/4	1.12	1.49	1.86	2.23	2.61	2.98	3.35	3.72	4.09	4.47	4.84	5.21	5.58	5.95
2	1.28	1.70	2.13	2.55	2.98	3.40	3.83	4.25	4.68	5.10	5.53	5.95	6.38	6.81
21/4	1.44	1.91	2.39	2.87	3.35	3.83	4.31	4.79	5.26	5.74	6.22	6.70	7.18	7.66
21/2	1.60	2.13	2.66	3.19	3.72	4.25	4.79	5.32	5.85	6.38	6.91	7.44	7.96	8.51
23/4	1.75	2.34	2.92	3.51	4.09	4.68	5.26	5.85	6.43	7.02	7.60	8.19	8.77	9.36
3	1.91	2.55	3.19	3.83	4.47	5.10	5.74	6.38	7.02	7.66	8.29	8.93	9.57	10.2
31/4	2.07	2.76	3.46	4.15	4.84	5.53	6.22	6.91	7.60	8.29	8.99	9.68	10.4	11.1
31/2	2.23	2.98	3.72	4.47	5.21	5.95	6.70	7.44	8.19	8.93	9.68	10.4	11.2	11.9
33/4	2.39	3.19	3.99	4.79	5.58	6.38	7.18	7.98	8.77	9.57	10.4	11.2	12.0	12.8
4	2.55	3.40	4.25	5.10	5.95	6.81	7.66	8.51	9.36	10.2	11.1	11.9	12.8	13.6
4½	2.71	3.62	4.52	5.42	6.33	7.23	8.13	9.04	9.94	10.8	11.8	12.7	13.6	14.5
4½	2.87	3.83	4.79	5.74	6.70	7.66	8.61	9.57	10.5	11.5	12.4	13.4	14.4	15.3
4¾	3.03	4.04	5.05	6.06	7.07	8.08	9.09	10.1	11.1	12.1	13.1	14.1	15.2	16.2
5	3.19	4.25	5.32	6.38	7.44	8.51	9.57	10.6	11.7	12.8	13.8	14.9	16.0	17.0
5½	3.35	4.47	5.58	6.70	7.82	8.93	10.0	11.2	12.3	13.4	14.5	15.6	16.7	17.9
5½	3.51	4.68	5.85	7.02	8.19	9.36	10.5	11.7	12.9	14.0	15.2	16.4	17.5	18.7
5¾	3.67	4.89	6.11	7.34	8.56	9.78	11.0	12.2	13.5	14.7	15.9	17.1	18.3	19.6
6	3.83	5.10	6.38	7.66	8.93	10.2	11.5	12.8	14.0	15.3	16.6	17.9	19.1	20.4
6¼	3.99	5.32	6.65	7.98	9.30	10.6	12.0	13.3	14.6	16.0	17.3	18.6	19.9	21.3
6½	4.15	5.53	6.91	8.29	9.68	11.1	12.4	13.8	15.2	16.6	18.0	19.4	20.7	22.1
6¾	4.31	5.74	7.18	8.61	10.0	11.5	12.9	14.4	15.8	17.2	18.7	20.1	21.5	23.0
7	4.47	5.95	7.44	8.93	10.4	11.9	13.4	14.9	16.4	17.9	19.4	20.8	22.3	23.8
71/4	4.63	6.17	7.71	9.25	10.8	12.3	13.9	15.4	17.0	18.5	20.0	21.6	23.1	24.7
71/2	4.79	6.38	7.98	9.57	11.2	12.8	14.4	16.0	17.5	19.1	20.7	22.3	23.9	25.5
73/4	4.94	6.59	8.24	9.89	11.5	13.2	14.8	16.5	18.1	19.8	21.4	23.1	24.7	26.4
8	5.10	6.81	8.51	10.2	11.9	13.6	15.3	17.0	18.7	20.4	22.1	23.8	25.5	27.2
8½	5.42	7.23	9.04	10.8	12.7	14.5	16.3	18.1	19.9	21.7	23.5	25.3	27.1	28.9
9	5.74	7.66	9.57	11.5	13.4	15.3	17.2	19.1	21.1	23.0	24.9	26.8	28.7	30.6
9½	6.06	8.08	10.1	12.1	14.1	16.2	18.2	20.2	22.2	24.2	26.3	28.3	30.3	32.3
10	6.38	8.51	10.6	12.8	14.9	17.0	19.1	21.3	23.4	25.5	27.6	29.8	31.9	34.0
10½	6.70	8.93	11.2	13.4	15.6	17.9	20.1	22.3	24.6	26.8	29.0	31.3	33.5	35.7
11	7.02	9.36	11.7	14.0	16.4	18.7	21.1	23.4	25.7	28.1	30.4	32.8	35.1	37.4
11½	7.34	9.78	12.2	14.7	17.1	19.6	22.0	24.5	26.9	29.3	31.8	34.2	36.7	39.1
12	7.66	10.2	12.8	15.3	17.9	20.4	23.0	25.5	28.1	30.6	33.2	35.7	38.3	40.8

AMERICAN INSTITUTE OF STEEL CONSTRUCTION



#### STAINLESS SHEETS

### 304, 304L and Nitronic™ 30

Cold Rolled, Annealed and Pickled. Finishes: 2B, #3 and #4

304: ASTM A240, ASME SA240, QQS 766, MIL-S 5059, and AMS 5513

304L: ASTM A240, ASME SA240, QQS 766, and AMS 5511 Nitronic 30: ASTM A240, A666

Sizes in Stock

Gauge & Size in	Thickness in	Est. Wt. per Sq. Ft.	Est. Wt. per Sheet			Nitrenic
Inches	Inches	in Lbs.	in Lbs.	304	304L	30
7 36 x 120	1874	.7.871	236.1 .	. X .		
48 x 120	.1874	7.871	314.8	Χ	χ	
48 x 144	.1874	7.871	377.8	Χ	χ	
60 x 120	.1874	7.871	393.6	Χ	Χ	
60 x 144	l <u>.1874</u>	7,871	472.3	Χ	Х	
8 36 x 120	1650	. 6.930	207.9 .	. X .		
48 x 120	.1650	6.930	277.2	X	Χ	
48 x 144	.1650	6.930	332.6	X		
60 x 120	.1650	6.930	346.5	Х		
60 x 144	.1650	6.930	415.8	Х		
72 x 120	.1650	6.930	415.8	Х	• •	• •
1036 x 96	1350 .	5.670		. X		
36 x 120	.1350	5.670	170.1	Х	• •	• •
36 x 144	.1350	5.670	204.1	X		• •
42 x 120	.1350	5.670	198.5	X	• •	• •
48 x 96	.1350	5.670	181.4	X	. ,	
48 x 120	.1350	5.670	226.8	X	Х	Х
48 x 144	.1350	5.670	272.2	X	Χ	
48 x 240	.1350	5.670	453.6	X	• •	
60 x 96	.1350	5.670	226.8	χ	٠.٠	• •
60 x 120	.1350	5.670	283.5	χ	Χ	• •
60 x 144	.1350	5.670	340.2	X		
60 x 240	.1350	5.670	567.0	X	• •	
72 x 120	.1350	5.670	340.2	X X		• •
72 x 144	.1350	5.670	408.2 . 121.0 .	. X		
1136 x 96	1200 .	5.040	151.2	. X		• • • •
36 x 120	.1200	5.040 5.040	181.4	x	• •	• •
36 x 144	.1200 .1200	5.040	176.4	x	• •	• •
42 x 120	.1200	5.040	161.3	x	• • •	
48 x 96 48 x 120	.1200	5,040	201.6	x	 X	X
48 x 144	,1200	5.040	241.9	X		,
46 X 144 60 X 96	.1200	5.040	201.6	x		• • •
60 x 120	.1200	5.040	252.0	x	χ	• • •
60 x 120	.1200	5.040	302.4	X	^	
72 x 120	.1200	5.040	302.4	X	• •	••
72 x 120 72 x 144	.1200	5.040	362.9	x	• •	
12 X 144	.1200	5.570			{(	Continued,

¹Also stocked as BA.

3/16

### BOLTS, THREADED PARTS AND RIVETS Shear Allowable load in kips

				TABL	E  -	D. S	HEA	\R					
						Nominal Diameter d, in.							
	ASTM		Hole	F.	Load-	5/8	3/4	7/a	1	11/ ₈	11/4	1 <del>3∕</del> a	11/2
	Desig- nation	ection Type*	Type ^b	ksi	inge					minal Di			
		1,100				.3068	.4418	.6013	.7854	.9940	1.227	1.485	1.767
	A307	_	STD NSL	10.0	တΩ	3.1 6.1	4.4 8.8	6.0 12.0	7.9 15.7	9.9 19.9	12.3 24.5	14.8 29.7	17.7 35.3
			STD	17.0	s o	5.22 10.4	7.51 15.0	10.2 20.4	13.4 26.7	16.9 33.8	20.9 41.7	25.2 50.5	30.0 60.1
		SC ^a . Class A	OVS, SSL	15.0	SD	4.60 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 36.8	22.3 44.6	26.5 53.0
	A325		LSL	12.0	SD	3.68 7.36	5.30 10.6	7.22 14.4	9.42 18.8	11.9 23.9	14.7 29.4	17.8 35.6	21.2 42.4
		N	STD, NSL	21.0	S	6.4 12.9	9.3 18.6	12.6 25.3	16.5 33.0	20.9 41.7	25.8 51.5	31.2 62.4	37.1 74.2
Bolts		x	STD, NSL	30.0	S	9.2 18.4	13.3 26.5	18.0 36.1	23.6 47.1	29.8 59.6	36.8 73.6	44.5 89.1	53.0 106.0
	A490		STD	21.0	SD	- 6.44 12.9	9.28 18.6	12.6 25.3	16.5 33.0	20.9 41.7	25.8 51.5	31.2 62.4	37.1 74.2
		SCª Class A	OVS, SSL	18.0	SD	5.52 11.0	7.95 15.9	10.8 21.6	14.1 28.3	17.9 35.8	22.1 44.2	26.7 53.5	31.8 63.6
		<b>^</b> .	LSL	15.0	S D	4.60 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 36.8	22.3 44.6	26.5 53.0
		N	STD, NSL	28.0	S D	8.6 17.2	12.4 24.7	16.8 33.7	22.0 44.0	27.8 55.7	34.4 68.7	41.6 83.2	49.5 99.0
		х	STD. NSL	40.0	S D	12.3 24.5	17.7 35.3	24.1 48.1	31.4 62.8	39.8 79.5	49.1 98.2	59.4 119.0	70.7 141.0
sts	A502-1	_	STD	17.5	S	5.4 10.7	7.7 15.5	10.5 21.0	13.7 27.5	17.4 34.8	21.5 42.9	26.0 52.0	30.9 61.8
Rivets	A502-2 A502-3	_	STD	22.0	S	6.7 13.5	9.7 19.4	13.2 26.5	17.3 34.6	21.9 43.7	27.0 54.0	32.7 65.3	38.9 77.7
	A36 ( <i>F</i> _u =58 ksi)	N	STD	9.9	S D	3.0 6.1	4.4 8.7	6.0 11.9	7.8 15.6	9.8 19.7	12.1 24.3	14.7 29.4	17.5 35.0
		X	STD	12.8	SD	3.9 7.9	5.7 11.3	7.7 15.4	10.1 20.1	12.7 25.4	15.7 31.4	19.0 38.0	22.6 45.2
Threaded Perts	A572, Gr. 50 (F _u =65 ksi)	N	STD	11.1	S	3.4 6.8	4.9 9.8	6.7 13.3	8.7 17.4	11.0 22.1	22.1 27.2 33.0 14.2 17.5 21.2	19.6 39.2	
reade		X	STD	14.3	S D	4,4 8.8	6.3 12.6	8.6 17.2	11.2 22.5	14.2 28.4	17.5 35.1	21.2 42.5	25.3 50.5
É	A588 (F _u =70 ksi)	N	STD	11.9	S D	3.7 7.3	5.3 10.5	7.2 14.3	9.3 18.7	11.8 23.7	14.6 29.2	17.7 35.3	21.0 42.1
		X	STD	15.4	S D	4.7 9.4	6.8 13.6	9.3 18.5	12.1 24.2	15.3 30.6	18.9 37.8	22.9 45.7	27.2 54.4

[&]quot;SC = Slip critical connection.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

N: Bearing-type connection with threads included in shear plane.

X: Bearing-type connection with threads excluded from shear plane.  $^{\circ}$ STD: Standard round holes ( $d+1/_{10}$  in.) OVS

OVS: Oversize round holes SSL: Short-slotted holes

LSL: Long-siotted holes
NSL: Long-or short-slotted hole normal to load direction

NSL: Long-or short-slotted hole normal to load direction (required in bearing-type connection).

S: Single shear D: Double shear.

For threaded parts of materials not listed, use  $F_v = 0.17F_v$  when threads are included in a shear plane, and  $F_v = 0.22F_v$  when threads are excluded from a shear plane.

To fully pretension bolts 1%-in. dia. and greater, special impact wrenches may be required. When bearing-type connections used to splice tension members have a fastener pattern whose length, measured parallel to the line of force, exceeds 50 in., tabulated values shall be reduced by 20%. See AISC ASD Commentary Sect. J3.4.

### Structural Assessment of a Hazardous Waste Storage Tank for Hukill Chemical Company

### 7 Tank Dike System - Tanks V-114 thru V-614



Since tanks must be tested with water, a specific gravity g less than 1 is not recommended for design purposes.

2. Shell Design. The shell plate is made up of one or more horizontal plate courses of width w (usually about 8 ft). Several plates may be required to make up each course. The vertical seams are staggered relative to the vertical seams in adjacent plate courses. Tank shells are cylindrical membranes designed to resist hoop tension (Fig. 1). Plate thickness is calculated at the bottom edge of each course.

$$T_h = 2.60hDg \tag{3}$$

$$T_{h} = 2.60hDg$$

$$t_{h} = \frac{T_{h}}{fE} = \frac{2.60hDg}{fE}$$
(3)

where  $T_h =$ shell tension, lb per in., at depth h

h = depth from top of tank, ft

E = joint efficiency factor f = allowable unit stress, psi

 $t_h$  = shell plate thickness, in.

For welded construction, E varies from 0.35 to 1.0 depending on the type of joint



used and the required welding-inspection procedure. Lap-welded joints, where used, are based on fillet welds the full thickness of the plates joined. Lap welds in tank bottoms and roof plates not in contact with water are single-lap-welded from the top side only. Lap welds in roofs and shell plates in contact with water are double-lap-welded.

The joint efficiencies specified in Table 1 are based on nominal inspection of the welding. The owner may specify full magnafluxing in addition to nominal inspection. Only full-penetration buttwelded joints are permitted at joint efficiencies greater than 0.75, and the joint efficiency may exceed 0.85 only when rigid inspection (extended radiographic examination) is provided. Partialpenetration butt welds are permissible only in tank shell joints subjected to secondary stress, such as horizontal seams, for which the direct vertical stress is usually negligible. However, when heavy vertical loads are supported by the

shell, the vertical stress is considered to be a principal stress and the horizontal seams require full-penetration butt welding.

Table 1. Efficiencies of Welded Joints

Type of welded joint	E	Remarks		
Singlé lap.  Double lap.  Partial-penetration butt (3½ min).  Partial-penetration butt (3½ min).  Full-penetration butt.  Full-penetration butt.	0.75 0.66 1.00 0.85	Continuous welds Continuous welds Tension joints Compression joints Tension joints Compression joints		

3. Bottom Plates. The flat bottoms in reservoirs are usually grade-supported, the liquid load on the top side being resisted by an equal upward foundation soil pressure. Steel bottoms usually have a minimum thickness of 1/4 in. The plates are lap-welded to each other top side only for liquid tightness (Fig. 2). Figure 3 shows the simple detail required for connecting the bottom to the tank shell.

Support of relatively light shells requires no special consideration. When the

of the biaxial stresses can be determined by statics. The upward hydrostatic pressure on a horizontal plane at the distance h below the high-water line will be balanced by a system of meridional membrane stresses  $T_2$  (Fig. 18). Thus

$$T_2 = \frac{\gamma h \pi D'^2 / 4 - W_w}{\pi D' \cos \theta} \tag{24}$$

where D' = diameter of membrane at cut section

 $\gamma$  = density of product stored

The weight of the metal should be included in the determination of  $T_2$ .

To determine the other (latitudinal) membrane stress  $T_1$ , equilibrium of  $T_1$  and  $T_2$  with the hydrostatic pressure p normal to the surface at the depth h gives

$$T_1 = R_1 \left( p - \frac{T_2}{R_2} \right) \tag{25}$$

where  $R_1$  = latitudinal radius

 $R_2$  = meridional radius

Several points should be checked to determine maximum compressive stress. The computed maximum stress will determine the required roof-plate thickness. The curvature in the meridional direction determines the compressive buckling strength in the latitudinal direction, whereas the latitudinal curvature determines the compressive buckling strength in the meridional direction.

Having computed  $T_1$  and  $T_2$  the next step is to determine the required plate thickness. Allowable tensile unit stresses are governed by the tensile properties of the material. Allowable compressive unit stresses are governed by buckling strength, which can be determined by the Boardman formula for mild steels,

$$f_{\sigma} = 2,000,000 \frac{t}{R} \left( 1 - \frac{100}{3} \frac{t}{R} \right)$$
 (26)

where t = plate thickness, in.

R =curvature normal to direction of stress, in.

R = curvature normal to direction of stress, in: $f_c = \text{allowable compression stress, psi* (limited to 15,000 psi in current AWWA)}$ 

Specifications)

10. Suspended Bottoms. Design of suspended bottoms formed by a surface of revolution is similar to that of the roof. The bottom is sectioned by a transverse plane, the stresses  $T_1$  and  $T_2$  determined, and the required plate thickness calculated. In hemispherical bottoms, where  $R_1 = R_2 = R$ , the maximum tensile stress, which occurs at the very bottom (Fig. 17), is

$$T_1 = T_2 = \frac{\gamma HR}{2} \tag{27}$$

The stresses at the spring line are

$$T_1 = \gamma R \left( \frac{h'}{2} - \frac{R}{3} \right) \tag{28}$$

$$T_2 = \gamma R \left( \frac{h'}{2} + \frac{R}{3} \right) \tag{29}$$

where R =spherical radius of bottom

H = distance from high-water line to bottom of tank

 $h'={
m distance}$  from high-water line to spring line of bottom. The stresses  $T_1$  and  $T_2$  in suspended conical bottoms are determined independently

* Factor of safety = 2.

(Fig. 19). When the cylindrical portion is filled to a depth X above the cone-tocylinder junction, the stresses in the cone at any point he below the spring line are

$$T_{z} = \frac{\gamma}{2\cos\theta} \left(\frac{D}{2} - h_{e}\tan\theta\right) \left(X + \frac{2h_{e}}{3} + \frac{D}{6}\cot\theta\right)$$
(30)

$$T_1 = \frac{\gamma}{\cos \theta} \left( \frac{D}{2} - h_c \tan \theta \right) (X + h_c) \tag{31}$$

At the spring line the stresses are

$$T_2 = \frac{\gamma}{2\cos\theta} \frac{D}{2} \left( X + \frac{D}{6}\cot\theta \right) \tag{32}$$

$$T_1 = \frac{\gamma DX}{2\cos\theta} \tag{33}$$

where  $\theta = \text{apex angle}$ At the apex  $T_2 = T_1 = 0$ .

Compression stresses must also be determined at the cone-to-cylinder junction,

where a compression girder is required to resist the inward pull of the cone bottom (Fig. 31a). The compression force C in the girder is

$$C = \frac{\gamma}{8} \left( X + \frac{D}{6} \cot \theta \right) D^2 \tan \theta \quad (34)$$

Portions of cone and shell act with the girder. The effective width of each strip is assumed to be  $0.78 \sqrt{Rt}$  but not to exceed 16t. Therefore, the effective area is the

$$A_{eff} = 0.78(t_c \sqrt{R_c t_c} + t_1 \sqrt{R_1 t_1})$$
(35a)

$$A_{\text{eff(max)}} = 16(t_c^2 + t_1^2) \tag{35b}$$

where  $R_c$ ,  $R_1$  = radius of shell, cone  $t_c$ ,  $t_1$  = thickness of shell, cone 11. Balcony or Ring Girder. The shell of a column-supported tank is considered to be a circular girder uniformly loaded over its periphery and supported by columns, equally spaced on the shell circumference, attached directly to the tank shell. The



Fig. 19. Membrane forces in suspended bottom.

supporting tower generates concentrated radial and tangential forces on the tank structure. These forces may be caused by sloping columns and/or the diagonal bracing system in the tower, and a ring girder must be provided to resist them. The ring girder is located at the intersection of the column's neutral axis with the tank shell and is usually positioned at the spring line of the suspended bottom. It also functions as the top strut line of the tower. A tank balcony can serve as a ring girder. Balconies should be wide enough to permit walking upright around the tank and should provide easy passage at the columns. If a balcony is not used, some form of ring girder must be provided.

The force system on the balcony or ring girder of a tank having vertical columns consists of the shears q in the shell resulting from the horizontal load H at strut line or balcony due to wind or seismic forces, and the resisting forces in the bracing

#### CHAPTER B

#### **DESIGN REQUIREMENTS**

This chapter contains provisions which are common to the Specification as a whole.

#### **B1. GROSS AREA**

The gross area of a member at any point shall be determined by summing the products of the thickness and the gross width of each element as measured normal to the axis of the member.

For angles, the gross width shall be the sum of the widths of the legs less the thickness.

#### **B2.** · NET AREA

The net area  $A_n$  of a member is the sum of the products of the thickness and the net width of each element computed as follows:

The width of a bolt or rivet hole shall be taken as  $\frac{1}{16}$  in. greater than the nominal dimension of the hole.

For a chain of holes extending across a part in any diagonal or zigzag line, the net width of the part shall be obtained by deducting from the gross width the sum of the diameters or slot dimensions as provided in Sect. J3.2, of all holes in the chain, and adding, for each gage space in the chain, the quantity

$$s^2/4g$$

where

- s = longitudinal center-to-center spacing (pitch) of any two consecutive holes, in.
- g = transverse center-to-center spacing (gage) between fastener gage lines, in.

For angles, the gage for holes in opposite adjacent legs shall be the sum of the gages from the back of the angles less the thickness.

The critical net area  $A_n$  of the part is obtained from that chain which gives the least net width.

In determining the net area across plug or slot welds, the weld metal shall not be considered as adding to the net area.

#### **B3. EFFECTIVE NET AREA**

When the load is transmitted directly to each of the cross-sectional elements by connectors, the effective net area  $A_{\varepsilon}$  is equal to the net area  $A_{n}$ .

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

where.

 $L_e$  = distance from the free edge to center of the bolt, in.

d = bolt dia., in.

If deformation around the hole is not a design consideration and adequate spacing and edge distance is as required by Sects. J3.8 and J3.9, the following equation is permitted in lieu of Equation (J3-1):

$$F_p = 1.5 F_u$$
 (J3-4)

and the limit in Equation (J3-3) shall be increased to  $1.5F_u$ .

#### 8. Minimum Spacing

The distance between centers of standard, oversized or slotted fastener holes shall not be less than 2½ times the nominal diameter of the fastener* nor less than that required by the following paragraph, if applicable.

Along a line of transmitted forces, the distance between centers of holes s shall be not less than 3d when  $F_p$  is determined by Equations (J3-1) and (J3-2). Otherwise, the distance between centers of holes shall not be less than the following:

a. For standard holes:

$$s \le 2P/F_u t + d/2 \tag{J3-5}$$

where

P = force transmitted by one fastener to the critical connected part, kips

 $F_u$  = specified minimum tensile strength of the critical connected part, ksi

t = thickness of the critical connected part, in.

b. For oversized and slotted holes, the distance required for standard holes in subparagraph a, (above), plus the applicable increment  $C_1$  from Table J3.4, but the clear distance between holes shall not be less than one bolt diameter.

#### 9. Minimum Edge Distance

The distance from the center of a standard hole to an edge of a connected part shall be not less than the applicable value from Table J3.5 nor the value from Equation (J3-6), as applicable.

Along a line of transmitted force, in the direction of the force, the distance from the center of a standard hole to the edge of the connected part  $L_e$  shall be not less than  $1^{1/2}d$  when  $F_p$  is determined by Equations (J3-1) or (J3-2). Otherwise the edge distance shall be not less than

$$L_e \le 2P/F_u t \tag{J3-6}$$

where P,  $F_{u}$ , t are defined in Sect. J3.8.

^{*}A distance of 3d is preferred.

### Structural Assessment of a Hazardous Waste Storage Tank for Hukill Chemical Company

## Index of Index of Dike Wall Drawings and Sketches

Dike I.D.	Exhibit	Ref.	Drawing Description
7 Tank Dike	D-2	[14.1]	H.C.C. Reduced Drawing 1294-F1, Plan Sheet 10
BTMS/Feed	D-10	[14.2]	H.C.C. Reduced Drawing 1700-F1, Plan Sheet 11C
F-1 Fuels Dike	D-6	[14.3a] [14.3b] [14.3c]	Sketch of Ivany Block Wall Sketch of Tank Pier Sketch of Existing Tank Layout
4X3M Feed Tanks	D-7		No Drawing - Described in Tank Calculations
Disperser Tank	D-8		No Dike Wall
Spent Acid Tank	D-9		No Drawing - Described in Tank Calculations



TYPICAL WALL



# NEW PIER DETAIL 4 REQUIRED 1/2" = 1'-0



# SECTION B-B



Scale: 1/8° = 1°

Table 3a. Areas and Perimeters of Bars in Sections 1 Ft. Wide (Slabs)

						dein pene	i)			
		_								
#2	#3	12,000 A 3	#5	#6	#7	ad *****	adi #9	#10	#11	Spacin
0.30	0.66	1. 20	1.86	2.64			- :		-	2
					2, 88	3.79		-		
3.8	5.7	7.5	9.4	11.3	13.2	15.1				2-1/
		1		1						3
0.17	0.38	0.69	1.06	1.51	2.06	2.71	3.43	4. 36		3-1,
2.7	4.0	5.4	6.7	8.1	9,4	10.8			4 68	-
	3				8.3	9.4	10.6	12.0	13.3	4
0.13	0.29	0.53	0.83	1.17	1.60	2.11	2.67	3.39	4.16	41/1
										<u> </u>
1.9	2.8	3.8	4.7	5.7	6.6	7.5	8.5	9,6	10.6	5
						1				5-1/
0,10	0.22	0.40	0.62	0.88	1. 20	1.58	2.00	2.54	3.12	6
1.6	2.4	3, 1	3.9	4.7	5.5	6.3			8.9	
		i	1		:	1	1	7.4	1	6-1,
0.09	0.19	0,34	0.53	0.75	1.03	1. 35	1.71	2.18	2.67	7
	1.9		3.1	3.8	4.4	5.0	5.7	6.4	7.1	7-1/
0.08	0.17	0.30	0.47	0.66	0.90	1.19	1.50	1.91	2.34	8
1.1	1.7	2.2	2.8	3. 3	3.9	4.4	5.0	5.6	6.2	8-1/
0.07	0.15	0.27	0.41	0.59	0.80	1.05	1.33	,		9
				0.56	0.76	1,00	1.26	1.60	1.97	9-1/
1.0	1,5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.6	3 1/
										- 10
0.06	0.13	0,23	0.35	0.50	0.69	0.90	1, 14	1.45	1.78	10-1
0.9	1.3	1.8	2.2	2.7	3.1	3.6	4.0	4.6	5.1	
			1		3,0	3.4	3.9	4.4	4.8	11
0.05	0.11	0.21	0.32	0.46	0.63	0.82	1.04	1.33	1. 63	11-3
0.8	1.2	1.6	2.0	2.4	2.8	3.1	3.5	4.0	4.4	12
f _s	a	0.18	0.29	0.41	0.55	0.73				13
	1, 13						0.86	1,09	1.34	14
18,000	1, 29	1.3	1.7	2.0	2. 4	2.7	3.0	3.4	3.8	7.4
20,000	1,44	0.16	ŀ	0.35		1	1	1		15
22,000 24,000	1.76	0.15	0.23	0.33	0.45	0.59	0.75	0.95	1.17	16
27, 000	2.00	1.2	1.5	1.8	2. 1	2.4	2.7	3.0	3.3	10
30,000	2,24	0.14	0.22	1				!	1	17
33, 000	4.40	1 4.4	L. 4	1 4.7	1 T.A	, 4.Z	1 4.0	; 60	,	- t
	Enter  Coeff #2 0.30 4.7 0.24 3.8 0.20 3.1 0.17 2.7 0.15 2.4 0.13 2.1 0.12 1.9 0.11 1.7 0.10 1.6 0.09 1.3 0.08 1.3 0.08 1.2 0.07 1.1 0.07 1.0 0.06 0.9 0.06 0.9 0.05 0.9 0.05 0.9 0.05 0.8 f _S 16,000 18,000 20,000 22,000 24,000 27,000	Enter table with  Coefficients a =  #2 #3  0.30 0.66 4.7 7.1 0.24 0.53 3.8 5.7  0.20 0.44 3.1 4.7 0.17 0.38 2.7 4.0 0.15 0.33 2.4 3.5 0.13 0.29 2.1 3.1 0.12 0.26 1.9 2.8 0.11 0.24 1.7 2.6 0.10 0.22 1.6 2.4 0.09 0.20 1.4 2.2 0.09 0.19 1.3 2.0 0.08 0.18 1.3 1.9 0.08 0.18 1.3 1.9 0.08 0.18 1.3 1.9 0.08 0.17 1.2 1.8 0.07 0.16 1.1 1.7 0.07 0.15 1.0 1.6 0.06 0.14 1.0 1.5 0.06 0.14 1.0 1.5 0.06 0.13 0.9 1.4 0.06 0.13 0.9 1.3 0.9 1.3 0.9 1.3 0.05 0.11 0.9 1.3 0.05 0.11 0.9 1.3 0.05 0.11 0.98 1.2 1.8 1.3 0.05 0.11 0.98 1.2 1.5 a 16,000 1.13 0.9 1.3 0.05 0.11 0.98 1.2 1.5 a	Enter table with values of A _S Coefficients a = \frac{f_S}{12,000} \ x \ \frac{1}{3} \]  #2  #3  #4  0.30  0.66  1.20 4.7  7.1  9.4  0.24  0.53  0.96 3.8  5.7  7.5  0.20  0.44  0.80 3.1  4.7  6.3  0.17  0.38  0.69 2.7  4.0  5.4  0.15  0.33  0.60 2.4  3.5  4.7  0.13  0.29  0.53 2.1  3.1  4.2  0.12  0.26  0.48 1.9  2.8  3.8  0.11  0.24  0.44 1.7  2.6  3.4  0.10  0.22  0.40 1.6  2.4  3.1  0.09  0.20  0.37 1.4  2.2  2.9  0.09  0.19  0.30 1.3  2.9  2.5  0.08  0.18  0.32 1.3  1.9  2.5  0.08  0.18  0.32 1.3  1.9  2.5  0.08  0.17  0.30 1.2  1.8  2.4  0.07  0.15  0.28 1.1  1.7  2.2  0.07  0.15  0.27 1.0  1.6  2.1  0.06  0.14  0.25 1.0  1.5  2.0  0.06  0.13  0.27 1.0  1.6  2.1  0.06  0.14  0.25 1.0  1.5  2.0  0.06  0.13  0.24 0.9  1.4  1.9  0.06  0.13  0.24 0.9  1.3  1.8 0.05  0.12  0.22 0.9  1.3  1.7  0.08  1.2  1.8 0.9  1.4  1.9  0.06  0.13  0.24 0.9  1.4  1.9  0.05  0.11  0.21 0.08  1.2  1.6  f _S a  1.4  16,000  1.13  1.8  1.6,000  1.13  1.7  0.05  0.11  0.20 0.8  1.2  1.6  f _S a  1.4  16,000  1.13  0.17 18,000  1.29  1.3 20,000  1.44  0.16 22,000  1.60  1.3 24,000  1.76  0.15 27,000  2.00  1.2 30,000  2.24  0.14	Enter table with values of $A_8$ (or $A_8'$ ) an Coefficients $a = \frac{i_8}{12,000}$ x j inserted in $\frac{1}{2}$ #3 #4 #5  0.30 0.66 1.20 1.86 4.7 7.1 9.4 11.8  0.24 0.53 0.96 1.49 3.8 5.7 7.5 9.4  0.20 0.44 0.80 1.24 3.1 4.7 6.3 7.8  0.17 0.38 0.69 1.06 2.7 4.0 5.4 6.7  0.15 0.33 0.60 0.93 2.4 3.5 4.7 5.9  0.13 0.29 0.53 0.83 2.1 3.1 4.2 5.2  0.12 0.26 0.48 0.74 1.9 2.8 3.8 4.7  0.11 0.24 0.44 0.68 1.7 2.6 3.4 4.3  0.10 0.22 0.40 0.62 1.6 2.4 3.1 3.9  0.09 0.20 0.37 0.57 1.4 2.2 2.9 3.6  0.09 0.19 0.34 0.53 1.3 2.0 2.7 3.4  0.08 0.18 0.32 0.50 1.3 1.9 2.5 3.1  0.08 0.17 0.30 0.47 1.2 1.8 2.4 2.9  0.07 0.15 0.28 0.49 1.0 0.59 1.0 0.50 1.3 1.9 2.5 3.1  0.08 0.17 0.30 0.47 1.2 1.8 2.4 2.9  0.07 0.15 0.28 0.49 1.0 0.59 1.2 2.5 3.1  0.08 0.17 0.30 0.47 1.2 1.8 2.4 2.9  0.07 0.15 0.28 0.44 1.9 2.5 3.1  0.08 0.17 0.30 0.47 1.1 1.7 2.2 2.8  0.07 0.15 0.28 0.49 1.0 1.6 2.1 2.6 0.39 1.0 1.6 2.1 2.6 0.39 1.0 0.60 0.14 0.25 0.39 1.0 0.60 0.13 0.24 0.37 0.9 1.4 1.9 2.4 0.06 0.13 0.24 0.37 0.9 1.3 1.7 2.2 0.05 0.11 0.21 0.32 0.9 1.3 1.7 2.2 0.06 0.13 0.24 0.37 0.9 1.4 1.9 2.4 0.06 0.13 0.24 0.37 0.9 1.3 1.7 2.2 0.05 0.11 0.20 0.31 1.8 2.2 0.9 1.3 1.7 2.2 0.05 0.11 0.21 0.32 0.99 1.3 1.7 2.2 0.05 0.11 0.21 0.32 0.99 1.3 1.7 2.2 0.05 0.11 0.20 0.31 1.8 0.29 1.4 1.9 2.4 1.8 1.6 0.00 1.13 0.24 0.37 0.9 1.3 1.7 2.2 0.05 0.11 0.20 0.31 1.8 0.29 1.4 1.9 2.4 1.8 1.6 0.00 1.13 0.24 0.37 0.9 1.3 1.7 2.2 0.05 0.11 0.20 0.31 0.8 1.2 1.6 2.0 0.8 1.2 1.6 2.0 0.95 0.11 0.20 0.31 0.8 1.2 1.6 2.0 0.18 1.2 1.6 2.0 0.18 1.2 1.6 2.0 0.18 1.2 1.6 2.0 0.18 1.2 1.6 2.0 0.18 1.2 1.5 3.0 0.00 1.2 1.5 1.5 3.0 0.00 1.2 1.5 1.5 3.0 0.00 1.2 1.5 1.5 3.0 0.00 1.2 1.5 1.5 3.0 0.00 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 3.0 0.00 1.2 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Enter table with values of $A_8$ (or $A_8'$ ) and $\Sigma_0 = \frac{f_8}{7}$ .  Coefficients $a = \frac{f_8}{12,000} \times j$ inserted in table are for $\frac{3}{12,000} \times j$ in table are for $\frac{3}{12,0000} \times j$ in table are for $\frac{3}{12,000$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Enter table with values of $A_{S}$ (or $A'_{S}$ ) and $\Sigma_{O} = \frac{V}{T/S \text{ du}}$ (V:lb; d:in.; u:ps) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Enter table with values of $A_8$ (or $A_8'$ ) and $E_0 = \frac{1}{7/8} cu$ (V:lb; d:in.; urpsi)  Coefficients $a = \frac{i_8}{12,000} \times j$ inserted in table are for use in $A_8 = \frac{M}{ad}$ or $A_3 = \frac{NE}{ad}$ #2 #3 #4 #5 #6 #7 #8 #9  0.30 0.66 1.20 1.86 2.64 4.7 7.1 9.4 11.8 14.2 0.24 0.53 0.96 1.49 2.11 2.88 3.79  0.20 0.44 0.80 1.24 1.76 2.40 3.16 4.00 3.1 4.7 6.3 7.8 9.4 11.0 12.6 14.2 0.17 0.38 0.69 1.06 1.51 2.06 2.71 3.43 2.7 4.0 5.4 6.7 8.1 1.9 1.0 12.6 14.2 0.17 0.38 0.69 1.06 1.51 2.06 2.71 3.43 2.7 4.0 5.4 6.7 8.1 1.9 4 11.0 12.6 0.15 0.33 0.60 0.93 1.32 1.80 2.37 3.00 2.4 3.5 4.7 5.9 7.1 8.3 9.4 11.0 1.8 12.2 0.13 0.29 0.53 0.83 1.17 1.60 2.11 2.67 0.13 0.29 0.53 0.83 1.17 1.60 2.11 2.67 0.11 0.24 0.44 0.68 0.96 1.05 1.12 1.50 2.37 3.00 1.12 0.26 0.48 0.74 1.06 1.44 1.90 2.40 1.19 2.8 3.8 4.7 5.7 6.6 7.5 8.5 0.11 0.24 0.44 0.68 0.96 1.31 1.72 2.18 1.7 2.6 3.4 4.3 5.1 6.0 6.9 7.7 0.10 0.22 0.40 0.62 0.88 1.20 1.31 1.72 2.18 1.7 2.6 3.4 4.3 5.1 6.0 6.9 7.7 0.10 0.22 0.40 0.62 0.88 1.20 1.31 1.72 2.18 1.7 2.6 3.4 4.3 5.1 6.0 6.9 7.7 0.10 0.22 0.40 0.62 0.88 1.20 1.58 2.00 1.6 2.4 3.1 3.9 4.7 5.5 6.3 7.1 0.09 0.20 0.37 0.57 0.81 1.11 1.46 1.85 1.3 2.0 0.27 0.47 0.57 0.81 1.11 1.46 1.85 1.3 2.0 0.27 0.47 0.57 0.81 1.11 1.46 1.85 1.3 1.9 2.5 3.1 3.6 4.4 5.1 5.8 6.5 0.09 0.19 0.20 0.37 0.57 0.31 1.11 1.44 1.90 2.40 0.09 0.20 0.37 0.57 0.81 1.11 1.14 1.46 1.85 1.3 1.9 2.5 3.1 3.8 4.7 5.5 6.3 7.1 0.00 0.80 0.18 0.32 0.50 0.70 0.95 1.26 1.58 2.00 1.10 0.02 0.27 0.44 0.62 0.88 1.20 0.85 1.12 1.11 1.7 2.2 2.8 3.1 3.8 4.4 5.0 5.0 5.7 1.9 1.9 1.9 1.50 0.9 1.19 1.50 0.00 0.18 0.27 0.41 0.59 0.90 1.19 1.50 0.00 0.19 0.20 0.37 0.57 0.31 0.57 0.31 1.11 1.46 1.85 1.3 1.9 2.5 3.1 3.8 4.4 5.0 5.9 5.1 5.4 0.00 0.10 0.15 0.27 0.41 0.59 0.80 0.90 1.19 1.50 0.00 0.15 0.27 0.41 0.59 0.80 0.90 1.19 1.50 0.00 0.15 0.27 0.41 0.50 0.90 0.90 1.19 1.50 0.00 0.15 0.27 0.41 0.59 0.90 0.90 1.19 1.50 0.00 0.14 0.25 0.39 0.56 0.75 0.80 0.90 1.10 1.26 0.00 0.13 0.24 0.44 0.40 0.80 0.65 0.85 1.12 0.40 0.90 1.3 1.4 1.9 2.2 2.5 3.0 3.3 0.75 0.90	Enter table with values of $A_3$ (or $A'_3$ ) and $\Sigma_0 = \frac{V}{7/6}$ au (V:lb; drin; urps1)  **Coefficients** $a = \frac{f_3}{12,000} \times j$ inserted in table are for use in $A_2 = \frac{M}{340}$ or $A_3 = \frac{ML}{340}$ .  **June 10.30** 0.66** 1.20** 1.86** 2.64** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.90** 1.	Enter table with values of $A_3$ (or $A^{'}g$ ) and $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 3b. Properties of Steel Reinforcing Bars

					Bar desig	gnation No	<b>.</b>				-	
	2	3	4	5	6	7	8	9	10	11	148	185
Unit Weight per ft., ib.	0.167	0. 376	0.668	1.043	1.502	2.044	2.670	3, 400	4, 303	5.313	7.65	13.60
Diameter in.	0.250	9.375	0,500	0.625	0.750	0.875	1.000	1. 128	-1.270	1.410	1.693	2, 257
Cross-sectional area, sq. in.	ò. os	0.11	0.20	0.31	0. <del>4</del> 4	0.60	0.79	1.00	1.27	1.56	2. 25	4.00
Perimeter, in.	0.786	1.178	1. 571	1.963	2. 356	2.749	3.142	3.544	3.990	4. 430	5. 32	7.09

Table 1. Coefficients (K, k, j, p) for Rectangular Sections

			,		7				<del>,</del>		<del></del>		
fc		к	k	j	P	ĸ	k	ţ	P				f.
and n	fc	f ₃ = 1	16,000	8 3	1.13	f _s =	18,000	a =	1.29	7///	77774	<u> </u>	<u>-</u> E-
	875.	137.	.356	.881	.0097	128.	.329	.890	.0080		7		<del>7                                    </del>
2500	1000.	169.	.387	.871	.0121	158.	.359	.880	.0100	1///	2/2/4/14	-   7	'
1	1125.	201.		.862	.0146	190.	.387	.871	.0121	~ \	î.A.	- /	
10.1	1250.		.415		.0172	222.	412	.863	0143		- 1	7/1	믹
10.1	1500.	235.	,441	.853	.0228	291.	.457	.848	0190				1 1
1 .	*200.	306.	.486	.838	.0220	271.					١	/ I	
	1050.		376	.875	.0124	162.	.349	.884	.0102	- <del> '</del>	<del>3</del>   4	لسيث	<u>↓</u> T
3000		173.	.376	.864	.0153	199.	.380	.873	.0127	L	<del>_</del>	fs n	l i
2000	1350.	212.	.408			238.	.408	864	.0153	p=-	<del>^</del>	n	1
9.2	1500.		-437	.854	.0184	278.	.434	.855	.0181	, ,	pq '		i
9.2			.463	.846	.0217		.479	.840	.0240			1	. 1
	1800.	380.	.509	.830	.02.86	362.	.4//		. 0240	k =	<del></del>	j = 1 -	- 늧 k
	1400.	249.	.412	.863	.0180	234.	384	.872	.0149				
4000	1600.	303.	.444	852	.0222	286.	.416	861	.0185	_ <b>4_</b> fo	: ~ .	K = 1/2	L:
4000	1800.		.474	.842	.0266	341.	.444	.852	.0222	! P* 27	-^^	1 2	^j
8.0	2000.	359.				397.	.471	.843	.0261		•	•	
0.5	2400.	417.	.500	-833	.0313	513.	. 516	.828	.0344	a = <del>-</del>	-13 X	(aver. j -	value)
	2400.	536.	.545	.818	.0409	JIJ.		,020	.0344	" 12	.,000``	,,	
	1750.	207	4==	9.52	0220	309.	.408	.864	.0199			M	NF I
5000		327.	.437	.854	.0239				.0245	for us	se in A _s =	M or A	: <del></del> -
1 3000	2000.	397.	.470	.843	.02.94	376.	.441	.853 .843	.0294	{	,	uu '	uui
- 1	2250. 2500.	468.	.500	.833	.0351	446.	.497	.835	.0345				
7.1		542.	. 526	.825	.0411	518.				ĸ	k	t	Р
L	3000.	694.	.571	.810	-0535	666.	. 542	.819	.04.52				_ "
		f _s = 2	20,000	2 =	1.44	f _s ≈	22,000	8 >=	1.60	f _s = :	24,000	E =	1.76
	875.	120.	.306	.898	.0067	113.	.287	.904	.0057	107.	.269	.910	.0049
2500	1000.		.336	.888	.0084	141.	.315	.895	.0072	133.	.296	.901	.0062
2300		149.				170.		.886	.0087	161.	.321	.893	.0075
1	1125.	179.	.362	.879	.0102		.341	.878		191.	.345	.885	.0090
10.1	1250.	211.	.387	.871	.0121	200.	.365	.864	0104	253.	.387	.871	.0121
1	1500.	277.	.431	.856	.0162	264.	.406	.004	.0139	433.	1.201	.571	1 .0121
	1050	1 62	226	.891	.0085	144.	.305	.898	.0073	136.	.287	.904	.0063
	1050.	152.	.326			178.	.334	.889	.0091	169.	.315	.895	.0079
3000	1200.	188.	.356	.881	.0107			880	.0111	204	.341	.886	.0096
١	1350.	226.	.383	.872	.0129	214.	.361			240.	.365	.878	.0114
9.2	1500.	265.	7.08	.864	.0153	252.	.385	.872	.0131		.408	.864	.0153
	1800.	346.	.453	.849	.0204	331.	.429	.857	.0176	317.		.004	.422
	24.00	221	255	600	0106	210.	.337	.888	.0107	199.	.318	.894	.0093
	1400.	221.	.359	.880	.0126			.877		246.	.348	.884	.0116
4000	1600.	272.	.390	.870	.0156	258.	.368	.868	.0134	295.	.375	.875	.0141
1	1800.	324.	.419	.860	.0188	309.	.396	.860	.0162 .0191	347.	.400	.867	.0167
8.0	2000.	379.	.444	.852	.0222	362. 472.	.421 .466	.845	.02.54	454.	444	.852	.0222
ĺ	2400.	492.	.470	.837	.0234	472.	.400		02.54	1		.0.2	
	1750.	292.	.383	.872	.0168	278.	.361	.880	.0144	265.	.341	.886	.0124
							.392	.869	.0178	326.	.372	.876	.0155
5000	2000.	358.	-415	.862	.0208	341.	.421	.860	.0215	390.	.400	.867	.0187
		426.	.444	.852	.0250	407.						.858	.0221
7.1		496.	.470	.843	.0294	475.	-447	-851 836	0254	456.	.425	.843	.0294
	3000.	641.	.516 .	.₁828	.0387	617.	-492	.836	.0335	595.	.4/0	د نسب .	. 02 34
		f ₅ = 2	27,000	6 =	2.00	fs =	30,000	2 =	2.24	f _s =	33,000	ŧ =	2.48
	875.	99.	.247	.918	.0040	92.	220	. 924	0022	97	211	070	0000
2 500	1000.		.272	.909	.0050		,228	.924	.0033	86.	.211	.930	.0028
2500	1125.	124. 150.	.272	.901	.0050	115.	.252	.908	.0042	108.	.234	. 922	.0036
1,0,1			.319	.894	.0074	140.				132.	.256	.915	.0044
10.1	1250.	178.				167.	.296	.901	.0062	157.	.277	.908	.0052
L	1500.	237.	.359	.880	.0100	224.	.336	.888	.0084	211.	.315	.895	.0072
	1050.	126.	.264	.912	.0051	117.	.244	.919	.0043	110	224	025	0000
12000	1200.	157.	.290	.903	.0064		.269	.910	.0054	110.	.226	.925	0036
3000	1350.	190.	.315	.895	.0079	147. 178.		.902	.0054	138.	.251	.916	.0046
9.2	1500.	225.	.338	.887	.0094	211.	.293 .315	.895	.0079	168.	.273	.909	.0056
".4	1800.	299.	.380	.873	.0127	282.	.356	.881	.0107	199.	.295		.0057
	1000.			,3		202.			.0107	267.	.334	.889	.0091
l	1400.	185.	.293	.902	.0076	173.	.272	.909	.0063	162.	.2,53	.916	.0054
4000	1600.	230.	.322	.893	.0095	215.	.299	.900	.0080	203.	.279	.907	.0068
7000	1800.	277.	.348	.884	.0116	260.	.324	.892	.0097	246.	.304	.899	.0083
8.0	2000.	326.	.372	.876	.0138	308.	.348	.884	.0116		.327	.891	.0099
0.0	2400.	430.	.416	.861	.0185	407.	.390	.870	.0156	291.			.0134
<u> </u>		-55.				707.	,		.51,50	387.	.368	.877	. • • • • •
1	1750.	247.	.315	.895	.0102	231.	.293	.902	.0085	218.	274	.909	.0073
5000	2000.	305.	.345	.885	.0128	287.	.321	.893	.0107	271.	.301	.900	.0091
]	2250.	366.	.372	.876	.0155	346.	.347	.884	.0130	327.	.326	.891	.0111
7.1	2500.	430.	.397	.868	.0184	407.	.372	.876	.0155	386.	.350	.883	.0132
1 ***	3000.	564.	.441	.853	.0245	537.	.415	.862	02.08				.0178
I	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~·	•				.74.0	1002	.0200	511.	.392	.869	-AT10

^{*&}quot;Balanced steel ratio" applies to problems involving bending only



### W SHAPES Dimensions

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
nation $A = A = A = A = A = A = A = A = A = A $	nation $A$						Web			Fla	nge			Distanc	e
W 8 × 67         19.7         9.00         9         0.570         %6         %6         8.280         8¼         0.935         1½6         6½6         1%6         8.280         8¼         0.935         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         6½6         1½6         1½6         6½6         1½6         6½6         1½6         ½6         6½6         1½6         6½6         1½6         ½6         1½6         ½6         6.535         6½2         0.465         ½66         1½66         ½66         1½66         ½66         1½66         ½66         ½66         ½66         ½66         ½66         ½66         ½66         ½66         ½66	W 8×67	_						<u>t.,</u>	ı				Ţ	k	k,
W 8×67         19.7         9.00         9         0.570         %to         %to         8.280         8¼         0.935         1%to         6%         1%to           ×58         17.1         8.75         8¼         0.510         ½         ¼         8.220         8¼         0.810         1¾to         6½         1¼to         6½         1½to         8½         0.400         ¾         %to         8.110         8%         0.665         1¼to         6½         1½to         6½to         1½to         1½to         6½to         1½to         6½to         1½to         6½to         1½	W 8×67		In.2	- 11	n.	In		In.	In		Ir	1.	ln.	in.	In
X58	**X58	W 8×67	19.7	9.00	9	0.570	9/10	5/40	B 280	814		1	1	···	1
X 48	**X48	×58	17.1		1 -		1	1							
X40	X40	×48	14.1	8.50	81/2			1		1		1 .			1 '
X35   10.3   8.12   8.46   0.310   9/16   9/18   8.020   8   0.495   9/2   6/6   1     X31   9.13   8.00   8   0.285   9/16   9/18   7.995   8   0.435   9/16   6/6     X24   7.08   7.93   7%   0.245   9/16   6.535   6/2   0.465   9/16   6/6     X24   7.08   7.93   7%   0.245   9/16   6.495   6/2   0.400   9/16   6/6     X24   7.08   7.93   7%   0.245   9/16   6.495   6/2   0.400   9/16   6/6     X24   7.08   7.93   7%   0.245   9/16   6.495   6/2   0.400   9/16   6/6     X25   8.26   8.14   8/6   0.230   9/16   5.250   5/4   0.400   9/16   6/6     X26   X27   X2	X35   10.3   8.12   846   0.310   716   718   8.020   8   0.495   72   656   1   718   718   718   718   716   718   716   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   718   7			8.25	81/4	0.360	3/8		1					) :	
X   X   X   X   X   X   X   X   X   X	X31 9.13 8.00 8 0.285 %16 1/16 7.995 8 0.435 1/16 61/6 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16 15/16 8/16			8.12	81/4	0.310	5/10	3/10	8.020			!			
×24       7.08       7.93       7%       0.245       ¼       ½       6.495       6½       0.400       %       6%       ½         W 8×21       6.16       8.28       8¼       0.250       ¼       ½       5.270       5¼       0.400       %       6%       ½         × 18       5.26       8.14       8%       0.230       ¼       ½       5.270       5¼       0.400       %       6%       ¾         W 8×15       4.44       8.11       8%       0.245       ¼       ½       4.015       4       0.315       ¾       6%       ¾         × 13       3.84       7.99       8       0.230       ¼       ½       4.000       4       0.255       ¼       6%       ¾         × 10       2.96       7.89       7%       0.170       ¾       ½       6.080       6%       0.455       ¼       6%       ½         × 20       × 25       7.34       6.38       6%       0.320       ¼       ½       6.020       6       0.365       ¾       4¼       ½         × 20       × 15       4.43       5.99       6       0.230       ¼       ½	×24       7.08       7.93       7%       0.245       ¼       %       6.495       6½       0.400       %       6%       ½       %       %       6%       ½       %       %       6%       ½       %       %       6%       ½       %       %       6%       ½       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       % <td< td=""><td>×31</td><td>9.13</td><td>8.00</td><td>В</td><td>0.285</td><td>5/10 ·</td><td>1/10</td><td>7.995</td><td>В</td><td>1</td><td></td><td></td><td>15/18</td><td>%</td></td<>	×31	9.13	8.00	В	0.285	5/10 ·	1/10	7.995	В	1			15/18	%
×24       7.08       7.93       7%       0.245       ¼       ½       6.495       6½       0.400       %       6%       %         W 8×21       6.16       8.28       8¼       0.250       ¼       ½       5.270       5¼       0.400       %       6%       1¾6         × 18       5.26       8.14       8%       0.230       ¼       ½       5.250       5¼       0.400       %       6%       ½         W 8×15       4.44       8.11       8%       0.245       ¼       ½       4.015       4       0.315       %       6%       ¾         ×10       2.96       7.89       7%       0.170       %       ½       4.000       4       0.255       ¼       6%       ½       1¼6       %         ×20       ×15       4.33       6.38       6%       0.320       ½       ½       6.080       6%       0.455       ¼       6%       1¼6       6%       ½       0.205       ½       6%       0.455       ¼       6%       0.455       ½       6%       0.365       ½       4¼4       ½       4¼       ½       4¼       ½       4       ½       4	X24       7.08       7.93       7%       0.245       ¼       ½       6.495       6½       0.400       ¾       6%       ½       %       9/16         W B×21       6.16       8.28       8¼       0.250       ¼       ¼       5.270       5¼       0.400       ¾       6%       1¾16       ½         × 18       5.26       8.14       8%       0.230       ¼       ½       5.250       5¼       0.330       ¾6       6%       ¼       ½         W 8×15       4.44       8.11       8%       0.245       ¼       ½       4.015       4       0.315       ¾6       6%       ¾4       ½         × 13       3.84       7.99       8       0.230       ¼       ¼6       4.000       4       0.255       ¼4       6%       ¼4       ½         × 10       2.96       7.89       7%       0.170       ¾6       6.080       8%       0.455       ¼6       6%       ¾6       ½6       ½6       ½6       ½6       ½6       ½6       ½6       ½6       ½6       ½6       ½6       ¼4       ¾4       ¾6       ½6       0.260       ¼6       0.260       ¼6       0.			8.06	В	0.285	5/18	3/16	6.535	61/2	0.465	7/10	61/6	15/16	%,
×18       5.26       8.14       8%       0.230       ¼       ½       5.250       5¼       0.330       ½       ½         W 8×15       4.44       8.11       8%       0.245       ¼       ½       4.015       4       0.315       ½       6%       ¾         ×13       3.84       7.99       8       0.230       ¼       ½       4.000       4       0.255       ¼       6%       ½       1½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾       ¾ <td>×18       5.26       8.14       8%       0.230       ¼       %       5.250       5¼       0.330       %       6%       ¾       ¼       ¼       ½       0.330       %       6%       ¾       ¼       ¼       ¼       4.015       4       0.315       %       6%       ¾       ½       ½       ½       4.015       4       0.255       ¼       6%       ¾       ½       ½       ½       4.000       4       0.255       ¼       6%       ¾       ½       ¾       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ¾       ¾       ¾       ¾<td>×24</td><td>7.08</td><td>7.93</td><td>7%</td><td>0.245</td><td>1/4</td><td>1/8</td><td>6.495</td><td>61/2</td><td>0.400</td><td>1</td><td></td><td></td><td>9/18</td></td>	×18       5.26       8.14       8%       0.230       ¼       %       5.250       5¼       0.330       %       6%       ¾       ¼       ¼       ½       0.330       %       6%       ¾       ¼       ¼       ¼       4.015       4       0.315       %       6%       ¾       ½       ½       ½       4.015       4       0.255       ¼       6%       ¾       ½       ½       ½       4.000       4       0.255       ¼       6%       ¾       ½       ¾       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ½       ¾       ¾       ¾       ¾ <td>×24</td> <td>7.08</td> <td>7.93</td> <td>7%</td> <td>0.245</td> <td>1/4</td> <td>1/8</td> <td>6.495</td> <td>61/2</td> <td>0.400</td> <td>1</td> <td></td> <td></td> <td>9/18</td>	×24	7.08	7.93	7%	0.245	1/4	1/8	6.495	61/2	0.400	1			9/18
×18       5.26       8.14       8%       0.230       ¼       ½       5.250       5¼       0.330       ¾6       6%       ¾         W 8×15       4.44       8.11       8%       0.245       ¼       ½       4.015       4       0.315       ¾6       6%       ¾         ×10       2.96       7.89       7%       0.170       ¾6       4.000       4       0.255       ¼       6%       ¼       ½6       6.080       6%       0.255       ¼       6%       ½       ½%       3.940       4       0.255       ¼       6%       ½       ½       ½       ½       3.940       4       0.255       ¼       6%       ½       ½       ½       ½       3.940       4       0.255       ¼       6%       ½       ½       ½       ½       3.940       4       0.255       ¼       6%       ½       ½       ½       ½       3.940       4       0.255       ¼       ½       ½       ½       3.940       4       0.455       ¾       ¾       ¼       ½       ½       3.940       4       0.455       ¾       ¾       ¼       ½       4.020       6       0.260       ¼ <td>× 18     5.26     8.14     8%     0.230     ¼     ½     5.250     5¼     0.330     ¾6     6%     ¾4     ¾1       W 8×15     4.44     8.11     8%     0.245     ¼     ½     4.015     4     0.315     ¾6     6%     ¾     ½       ×13     3.84     7.99     8     0.230     ¼     ½     4.000     4     0.255     ¼     6%     ¾     ½       ×10     2.96     7.89     7%     0.170     ¾e     ½     3.940     4     0.205     ¾e     6%     ½     ½e       W6×25     7.34     6.38     6%     0.320     ¾e     ½e     6.080     6%     0.455     ¾e     ¼     ¼e       ×20     ×15     4.43     5.99     6     0.260     ¼     ½e     6.020     6     0.365     ¾e     4¼     ¼e       ×15     4.43     5.99     6     0.230     ¼e     ½e     5.990     6     0.260     ¼e     4.030     4e     0.405     ¾e     4½     ¼e       ×12     3.55     6.03     6     0.230     ¼e     4.030     4e     0.280     ¼e     4¼     ¼e       ×12     <td< td=""><td>W 8×21</td><td></td><td>8.28</td><td>81/4</td><td>0.250</td><td>14</td><td>1/6</td><td>5.270</td><td>51/4</td><td>0.400</td><td>3/4</td><td>65%</td><td>13/10</td><td>16</td></td<></td>	× 18     5.26     8.14     8%     0.230     ¼     ½     5.250     5¼     0.330     ¾6     6%     ¾4     ¾1       W 8×15     4.44     8.11     8%     0.245     ¼     ½     4.015     4     0.315     ¾6     6%     ¾     ½       ×13     3.84     7.99     8     0.230     ¼     ½     4.000     4     0.255     ¼     6%     ¾     ½       ×10     2.96     7.89     7%     0.170     ¾e     ½     3.940     4     0.205     ¾e     6%     ½     ½e       W6×25     7.34     6.38     6%     0.320     ¾e     ½e     6.080     6%     0.455     ¾e     ¼     ¼e       ×20     ×15     4.43     5.99     6     0.260     ¼     ½e     6.020     6     0.365     ¾e     4¼     ¼e       ×15     4.43     5.99     6     0.230     ¼e     ½e     5.990     6     0.260     ¼e     4.030     4e     0.405     ¾e     4½     ¼e       ×12     3.55     6.03     6     0.230     ¼e     4.030     4e     0.280     ¼e     4¼     ¼e       ×12 <td< td=""><td>W 8×21</td><td></td><td>8.28</td><td>81/4</td><td>0.250</td><td>14</td><td>1/6</td><td>5.270</td><td>51/4</td><td>0.400</td><td>3/4</td><td>65%</td><td>13/10</td><td>16</td></td<>	W 8×21		8.28	81/4	0.250	14	1/6	5.270	51/4	0.400	3/4	65%	13/10	16
X   3   3.84   7.99   8   0.230   ½   ½   4.000   4   0.255   ½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½   6%   1½	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×18	5.26	B.14	8%	0.230	1/4	1/6	5.250	51/4			-	1	7/18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.11	81/6	0.245	1/4	1/2	4.015	4	0.315	5/1a	6%	3/4	1/6
W 6×25         7.34         6.38         6%         0.320         %18         %6         6.080         6%         0.455         %5         4%         1¾6         6.080         6%         0.455         %5         4%         1¾6         6.080         6%         0.455         %6         4¾         1¾6         6.020         6         0.365         %6         4¾         ¼         ½           × 15         4.43         5.99         6         0.230         ¼         ½         5.990         6         0.260         ¼         ½         4.020         6         0.260         ¼         ¼         ½         4.030         4         0.405         ¾         ¼         ¾         ½         ½         4.030         4         0.405         ¾         ¼         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾         ¾	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.230	1/4	1/6	4.000	4		ŀ		1	
\begin{array}{ c c c c c c c c c c c c c c c c c c c	\begin{align*} \beg	×10	2.96	7.89	7%	0.170	3/10	1/6	3.940	4	0.205	3/18	6%	5/8	7/18
\( \frac{\times 20}{\times 15} \)   \( \frac{5.87}{4.43} \)   \( 6.20 \)   \( 6.20 \)   \( 6.230 \)   \( 4.74 \)   \( 6.020 \)   \( 6.020 \)   \( 6.020 \)   \( 6.0260 \)   \( 6.0260 \)   \( 4.74 \)   \( 6.030 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)   \( 6.03 \)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	6%		5/18	3/16	6.080	6%	0.455	7/16	43/4	13/18	7/.
X 15	×15     4.43     5.99     6     0.230     ½     ½     5.990     6     0.260     ½     4¾     ½       W 6×161     4.741     6.28     6¼     0.260     ½     ½     4.030     4     0.405     ½     4¾     ¾       × 12     3.55     6.03     6     0.230     ½     ½     4.000     4     0.280     ½     4¼     ¾       × 9     2.68     5.90     5%     0.170     ¾     ½     3.940     4     0.215     ¾     4¼     ½       W 5×19     5.54     5.15     5%     0.270     ¼     ½     5.030     5     0.430     ½     3½     ½     ½       W 4×16     4.68     5.01     5     0.240     ½     ½     5.000     5     0.360     ¾     3½     ¾				61/4	0.260	1/4	1/6	6.020	6	0.365	1	1		
×12     3.55     6.03     6     0.230     ½     ½     4.000     4     0.280     ½     4¾     ¾       × 9     2.68     5.90     5%     0.170     ¾₁в     ½     3.940     4     0.215     ¾₁в     ¼     ¼       W 5×19     ×16     4.68     5.01     5     0.240     ¼     ½     5.030     5     0.430     ¾₁в     3½     1¾₁в       × 16     4.68     5.01     5     0.240     ¼     ½     5.000     5     0.360     ¾₀     3½     ¾	×12     3.55     6.03     6     0.230     ¼     ¼     4.000     4     0.280     ¼     4¼     %       × 9     2.68     5.90     5%     0.170     ¾1e     ½     3.940     4     0.215     ¾e     4¼     ½e       W 5×19     5.54     5.15     5½     0.270     ¼     ½e     5.030     5     0.430     ¾e     3½     ¾e       × 16     4.68     5.01     5     0.240     ¼     ½e     5.000     5     0.360     ¾e     3½     ¾e       ¼e     ½e     3.02     ½e     ½e     ½e     ½e     ½e     ½e	×15	4.43	5.99	6	0.230	<b>V</b> 4	1/a	5.990	6	0.260	1/4			
×12     3.55     6.03     6     0.230     ½     ½     4.000     4     0.280     ½     4¾     %       × 9     2.68     5.90     5%     0.170     ¾     ½     4.000     4     0.280     ¼     4¾     %       W 5×19     5.54     5.15     5%     0.270     ¼     ½     5.030     5     0.430     ¾     ¾     ¾       × 16     4.68     5.01     5     0.240     ¼     ½     5.000     5     0.360     ¾     3½     1¾       W 4×12     0.20     4.10     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00     4.00 <td< td=""><td>\( \text{x} 12 \) \( \text{x} 25 \) \( \text{c} 8.03 \) \( \text{c} 8 \) \( \text{c} 8.03 \) \( \text{c} 8.03 \) \( \text{c} 8 \) \( \text{c} 8.03 \) \( \t</td><td></td><td>4.74</td><td></td><td>6%</td><td>0.260</td><td>1/4</td><td>1/6</td><td>4.030</td><td>4</td><td>0.405</td><td>3/8</td><td>4%</td><td>3/4</td><td>7/10</td></td<>	\( \text{x} 12 \) \( \text{x} 25 \) \( \text{c} 8.03 \) \( \text{c} 8 \) \( \text{c} 8.03 \) \( \text{c} 8.03 \) \( \text{c} 8 \) \( \text{c} 8.03 \) \( \t		4.74		6%	0.260	1/4	1/6	4.030	4	0.405	3/8	4%	3/4	7/10
× 9   2.68   5.90   5%   0.170   ½6   3.940   4   0.215   ¾6   4¾   ½6   W 5×19   5.54   5.15   5%   0.270   ¼   ½6   5.030   5   0.430   ¾6   3½   1¾6   ¾6   ¾6   ¾6   ¾6   ¾6   ¾6   ¾	× 9   2.68   5.90   5%   0.170   ½   ½   3.940   4   0.215   ¾ 6   4¾   ½   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾ 6   ¾				_	0.230	1/4	1/6	4.000	4		1/4			
×16 4.68 5.01 5 0.240 1/4 1/6 5.000 5 0.360 1/6 31/2 1/4	×16 4.68 5.01 5 0.240 1/4 1/6 5.000 5 0.360 3/6 31/2 3/4 1/18	× 9	.2.68	5.90	51∕6	0.170	3∕18	1/6	3.940	4	0.215	3/16	43/4	9/18	
×16   4.68   5.01   5   0.240   ½   ½   5.000   5   0.360   %   3½   ¾	×16 4.68 5.01 5 0.240 ½ ½ 5.000 5 0.360 ¾ 3½ ¾ ½ ½		5.54	5.15	51/8	0.270	<i>y</i> 4	1/6	5.030	5	0.430	7/18	31/2	13/18	7/10
W 4 × 12   2 92   4 16   44   0 000   4   4   4   4   4   4	W 4×13 3.83 4.16 4% 0.280 1/4 1/6 4.060 4 0.345 1/6 24/4 11/18 1/18	×16	4.68	5,01	5	0.240	1/4	1∕6	5.000	5	0.360	3∕a	1		
77 4 13   3.63   4.16   4%   0.280   14   16   4.060   4   0.345   3%   23%   11/ ₁₈		W 4×13	3.83	4.16	4%	0.280	1/4	%	4.060	4	0.345	3∕8	23/4	11/16	7/18
												,			
												į			

W SHAPES d x x T
Properties

											ļ	<del>-</del>			ł
Nom- inal	Č		t Secti teria	on				EI	astic P	ropertie	s			istic Julus	1
Wt. per	$\frac{b_i}{2t_i}$	Fy'	$\frac{d}{t_{iv}}$	F,"	17	$\frac{d}{A_i}$	<del> </del>	xls X-X			Axis Y-	/	Z _x	Z _y	ĺ
Ft	LI	<u> </u>	'W		<u> </u>	///	1	S	T.	1	S	Γ			
Lb.		Ksi		, Ksi	In.	<u> </u>	In.4	In,3	ln.	In. ⁴	In.3	In.	In.3	In.3	
67	4.4		15.8	_	2.28	1.16	272	60.4	3.72	88.6	21.4	2.12	70.2	32.7	
58	5,1	-	17.2	<u> </u>	2.26	1.31	228	52.0	3.65	75.1	18.3	2.10	59.8	27.9	
48	5.9	-	21.3	-	2.23	1.53	184	43.3	3.61	60.9	15.0	2.08	49.0	22.9	1
40	7.2	-:	22.9	_	2.21	1.83	146	35.5	3.53	49.1	12.2	2.04	39.8	18.5	1
35	8.1	64.4	26.2		2.20	2.05	127	31.2	3.51	42.6	10.6	2.03	34.7	16.1	-
31	9.2	50.0	28.1	_	2.18	2.30	110	27.5	3.47	37.1	9.27	2.02	30.4	14.1	
28	7.0		28.3	l _	1.77	2.65	98.0	24.3	3.45	21.7	6.63	1.62	47.0		
24	8.1	64.1	32.4	63.0	1.76	3.05	82.8	20.9	3.42	18.3	5.63	1.61	27.2	10.1	
	J.,	"	05.4	00.0	1.70	0.00	02.0	20.3	3.42	10.3	3.03	1.01	23.2	8.57	
21	6.6	_	33.1	60.2	1.41	3.93	75.3	18.2	3.49	9.77	3.71	1.26	20.4	5.69	ł
18	8.0	<b> </b>	35.4	52.7	1.39	4.70	61.9	15.2	3.43	7.97	3.04	1.23	17.0	4.66	
			ĺ						1						
15	6.4	-	33.1	60.3	1.03	6.41	48.0	11.8	3.29	3.41	1.70	0.876	13.6	2.67	
13	7.8		34.7	54.7	1.01	7.83	39.6	9.91	3.21	2.73	1.37	0.843	11.4	2.15	
10	9.6	45.8	46.4	30.7	0.99	9.77	30.8	7.81	3.22	2.09	1.06	0.841	8.87	1.66	
25	6.7		19.9	_	1.66	2.31	50.4	10.7		477.4					
20	8.2	62.1	23.8		1.64	2.82	53.4 41.4	16.7 13.4	2.70	17.1	5.61		18.9	8.56	_
15	11.5	31.8	26.0		1.61	3.85	29.1	9.72	2.56	13.3 9.32		1.50	14.9	6.72	l
, i	11.0	01.0	20.0		1.01	3.03	29,1	9.72	2.50	9.32	3.11	1.46	10.8	4.75	
16	5.0		24.2	_	1.08	3.85	32.1	10.2	2.60	4.43	2.20	0.966	11.7	3.39	
12	7.1	l — İ	26.2	_	1.05	5.38	22.1	7.31	2.49	2.99	1.50	0.918	8.30	2.32	
9	9.2	50.3	34.7	54.8	1.03	6.96	16.4	5.56	2.47	2.19	1.11	0.905	6.23	1,72	
								ĺ						71.2	l
19	5.8	-	19.1	<u> </u>	1.38	2.38	26,2	10.2	2.17	9.13	3.63	1.28	11.6	5.53	
16	6.9	-	20.9		1.37	2.78	21.3	8.51	2.13	7.51	3.00	1.27	9.59	4.57	
13	5.9		440					١	١						ļ
13	5.9		14.9		1,10	2.97	11.3	5.46	1.72	3.86	1.90	1.00	6.28	2.92	l
				ĺ											
ŀ															٠.
Ī															
İ															
					ļ	į									
l															
Ī	į														
			·			1									ĺ

AMERICAN INSTITUTE OF STEEL CONSTRUCTION



# ANGLES Equal legs and unequal legs Properties for designing

Size and	k	Weight per	Area		AXIS .	X-X			AXIS	Y-Y		AXIS	S Z-Z
Thickness		Ft		I	S	r	У	1	S	ſ	х	r	Tan
ln.	In.	Lb.	In. ²	In. ⁴	In.3	in.	ln.	In.4	In.3	In.	in.	In.	α
L9×4× %	11/6	26.3	7.73	64.9	11.5	2.90	3.36	8.32	2.65	1.04	0.858	B47	0.216
⁸ /16	11/16	23.8	7.00	59.1	10.4	2.91	3.33	7.63	2.41	1.04	0.834	.850	0.218
1/2	1	21.3	6.25	53,2	9.34	2.92	3.31	6.92	2.17	1.05	0.810	.854	0.220
L 8×8×1%	13/4	56.9	16.7	98.0	17.5	2.42	2.41	98.0	17.5	2.42	2.41	1.56	1.000
1	15%	51.0	15.0	89.0	15.8	2.44	2.37	89.0	15.8	2.44	2.37	1.56	1.000
1/8	11/2	45.0	13.2	79.6	14.0	2.45	2.32	79.6	14.0	2.45	2.32	1.57	1.000
3/4	13%	38.9	11.4	69.7	12.2	2.47	2.28	69.7	12.2	2.47	2.28	1.58	1.000
5∕6	11/4	32.7	9.61	59.4	10.3	2.49	2.23	59.4	10.3	2.49	2.23	1.58	1.000
%1e	13/10	29.6	8.68	54.1	9.34	2.50	2.21	54.1	9.34	2.50	2.21	1.59	1.000
1/2	11/6	26.4	7.75	48.6	8.36	2.50	2.19	48.6	8.36	2.50	2.19	1.59	1.000
L 8×6×1	11/2	44.2	13.0	80.8	15.1	2.49	2.65	38.8	8.92	1.73	1.65	1.28	0.543
7∕8	13/8	39.1	11.5	72.3	13.4	2.51	2.61	34.9	7.94	1.74	1.61	1.28	0.547
3/4	11/4	33.8	9.94	63.4	11,7	2.53	2.56	30.7	6.92	1.76	1.56	1.29	0.551
5/8	11/6	28.5	8.36	54.1	9.87	2.54	2.52	26.3	5.88	1.77	1.52	1.29	0.554
9/16	11/15	25.7	7.56	49.3	8.95	2.55	2.50	24.0	5.34	1.78	1.50	1.30	0.556
1/2	1	23.0	6.75	44.3	8.02	2.56		21.7	4.79	1.79	1.47	1.30	0.558
7∕18	15/10	20.2	5.93	39.2	7.07	2.57	2.45	19.3	4.23	1.80	1.45	1.31	0.560
L 8×4×1	11/2	37.4	11.0	69.6	14.1	2.52	3.05	11.6	3.94	1.03	1.05	0.846	0.247
3/4	11/4	28.7	8.44	54.9	10.9	2.55	2.95	9.36	3.07	1.05	0.953	0.852	0.258
. №16	11/15	21.9	6.43	42.8	8.35	2.58	2.88	7.43	2.38	1.07	0.882	0.861	0.265
1/2	1	19.6	5.75	38.5	7.49	2.59	2.86	6.74	2.15	1.08	0.859	0.865	0.267
L7×4× ¾	11/4	26.2	7.69	37.8	8.42	2.22	2.51	9.05	3.03	1.09	1.01	0.860	0.324
5∕8	11/6	22.1	6.48	32.4	7.14	2.24	2.46	7.84	2.58	1.10	0.963	0.865	0.329
1/2	1	17.9	5.25	26.7	5.81	2.25	2.42	6.53	2.12	1.11	0.917	0.872	0.335
3∕8	7∕8	13.6	3.98	20.6	4.44	2.27	2.37	5.10	1.63	1.13	0.870	0.880	0.340
							1						
						]		1					Ì
		1											





Thickness  In.   1  L 6×6 ×1   1  7/4   1  3/4   1  - 5/6   1	/4 28.7	Area In. ² 11.0 9.73 8.44	I In. ⁴ 35.5 31.9	AXIS : S In.3 8.57	X-X r In. 1.80	y In.	1 In.4	AXIS S In.3	Y-Y r In.	x In.	AXIS	Z-Z Tan α
Thickness  In.  L 6×6 ×1 1'  ½ 1'  ¾ 1'  ½ 1'  ½ 1 1'	Ft Lb.  //2 37.4  //4 33.1  //4 28.7	In. ² 11.0 9.73	In. ⁴ 35.5	In. ³ 8.57	In.	in.						
L 6×6 ×1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	½ 37.4 ½ 33.1 ¼ 28.7	11.0 9.73	35.5	8.57			łn.⁴	ln.³	In.	in	In	
7/a 13 3/4 11 - 5/a 11	% 33.1 /4 28.7	9.73			1.80					,,,,	1111	
7/a 13 3/4 11 - 5/a 11	% 33.1 /4 28.7	9.73	31.9			1.86	35.5	8.57	1.80	1.86	1.17	1.000
. % 1		0 44		7.63	1.81	1.82	31.9	7.63	1.81	1.82	1.17	1.00
		0.44	28.2	6.66	1.83	1.78	28.2	6.66	1.83	1.78	1.17	1.00
8/10 1	/s 24.2	7.11	24.2	5.66	1.84	1.73	24.2	5.66	1.84	1.73	1.18	1,00
	/10 21.9	6.43	22.1	5.14	1.85	1,71	22.1	5.14	1.85	1.71	1.18	1.00
1/2 1	19.6	5.75	19.9	4.61	1.86	1.68	19.9	4.61	1.86	1.68	1.18	1.00
i	5/10 17.2	5.06	17.7	4.08	1.87	1.66	17.7	4.08	1.87	1.66	1.19	1.00
	/4 14.9	4.36	15.4	3.53	1.88	1.64	15.4	3.53	1.88	1.64	1.19	1.00
5∕18	3/16 12.4	3.65	13.0	2.97	1.89	1.62	13.0	2.97	1.89	1.62	1.20	1.00
.6×4 × % 1	/a 27.2	7.98	27.7	7.15	1.86	2.12	9.75	3.39	1.11	1.12	0.857	0.42
	4 23.6	6.94	24.5	6.25	1.88		8.68	2.97	1.12	1.08	0.860	0.42
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	/a 20.0	5.86	21.1	5.31	1.90		7.52	2.54	1.13	1.03	0.864	0.43
I	/10 18.1	5.31	19.3	4.83	1.90	2.01	6.91	2.31	1.14	1.01	0.866	0.43
1/2 1	16.2	4.75	17.4	4.33	1,91	1.99	6.27	2.08	1.15	0.987	0.870	0.44
7/16	5/10 14.3	4.18	15.5	3.83	1.92	1.96	5.60	1.85	1.16	0.964	0.873	0.44
3/8	/6 12.3	3.61	13.5	3.32	1.93	1.94	4.90	1.60	1.17	0.941	0.877	0.44
5/18	³⁄₁₁ 10.3	3.03	11.4	2.79	1.94	1.92	4.18	1.35	1.17	0.918	0.882	0.44
.6×3½× ½ 1	15.3	4.50	16.6	4.24	1.92	2.08	4.25	1.59	0.972	0.833	0.759	0.34
	/ ₆ 11.7	3.42	12.9	3.24	1,94	2.04	3.34	1.23	0.988	0.787	0.767	0.35
	3/16 9.8	2.87	10.9	2.73	1.95		2.85	1.04	0.996	0.763	0.772	0.35
5×5 × % 1	√ ₉ 27.2	7.98	17.8	5.17	1.49	1.57	17.8	5.17	1.49	1.57	0.973	1.00
	½ 27.2 ½ 23.6	6.94	15.7	4.53	1.51		15.7	4.53	1.51	1.52	0.975	1.00
	½ 20.0	5.86	13.6	3.86	1.52	1.48	13.6	3.86	1.52	1.48	0.978	
1/2 1	16.2	4.75	11.3	3.16	1.54		11.3	3.16	1,54	1.43	0.983	
7/16	5/16 14.3	4.18	10.0	2.79	1.55	ı	10.0	2.79	1.55	1.41	0.986	1,00
	/6 12.3	3.61	8.74	2.42	1.56	1.39	8.74	2,42	1.56	1.39	0.990	1.00
1	3/18 10.3	3.03	7.42	2.04	1.57	1.37	7.42	2.04	1.57	1.37	0.994	1.00



# ANGLES Equal legs and unequal legs Properties for designing

-	Size		k	Weight per	Area		AXIS	X-X			AXIS	Y-Y		AXIS	3 Z-Z
	Thicknes	s	•	Ft		I	S	r	у	1	S	r	х	r	Tan
	ln.		In.	Lb.	In. ²	In.	In.3	In.	In.	in.4	In.3	ln.	In.	ln.	α
1	L 5×3½×	3/4	11/4	19.8	5.81	13.9	4.28	1.55	1.75	5.55	2.22	0.977	0.996	0.748	0.464
1		5∕a	11/6	16.8	4.92	12.0	3.65	1.56	1.70	4.83	1.90	0.991	0.951	0.751	0.472
1		1/2	1	13.6	4.00	9.99	2.99	1.58	1.66	4.05	1.56	1.01	0.906	0.755	0.479
-		7∕16	15/18	12.0	3.53	8.90	2.64	1.59	1.63	3.63	1.39	1.01	0.883	0.758	0.482
ł		3/8	7/6	10.4	3.05	7.78	2.29	1.60	1.61	3.18	1.21	1.02	0.861	0.762	0.486
ı		5/10	13/16	8.7	2.56	6.60	1.94	1.61	1.59	2.72	1.02	1.03	0.838	0.766	0.489
ł		1/4	3/4	7.0	2.06	5.39	1.57	1.62	1.56	2.23	0.830	1.04	0.814	0.770	0.492
1	L5×3 ×	5/6	1	15.7	4.61	11.4	3.55	1.57	1.80	3.06	1.39	0.815	0.796	0.644	0.349
1		1/2	1	12.8	3.75	9.45	2.91	1.59	1.75	2.58	1.15	0.829	0.750	0.648	0.357
ļ		1/16	15/18	11,3	3.31	8.43	2.58	1.60	1.73	2.32	1,02	0.837	0.727	0.651	0.361
1		3∕8	7∕e	9.8	2.86	7.37	2.24	1.61	1.70	2.04	0.888	0.845	0.704	0.654	0.364
1		5∕18	13/16	8.2	2.40	6.26	1.89	1.61	1.68	1.75	0.753	0.853	0.681	0.658	0.368
1		1/4	3/4	6.6	1.94	5.11	1.53	1.62	1.66	1.44	0.614	0.861	0.657	0.663	0.371
	L4×4 ×	3/4	1 ½	18.5	5,44	7.67	2.81	1.19	1.27	7.67	2.81	1.19	1.27	0.778	1.000
.		3/6	1	15.7	4.61	6.66	2.40	1.20	1.23	6.66	2.40	1.20	1.23	0.779	1.000
ļ	ı	1/2	7/6	12.8	3.75	5.56	1.97	1.22	1.18	5.56	1.97	1.22	1.18	0.782	1.000
1		7/16	13/18	11.3	3.31	4.97	1.75	1.23	1.16	4.97	1.75	1.23	1,16	0.785	1.000
1		% Ⅰ	3/4	9.8	2.86	4.36	1.52	1.23	1.14	4.36	1.52	1.23	1.14	0.788	1.000
1		5/10	17/18	8.2	2.40	.3.71	1.29	1.24	1.12	3.71	1.29	1.24	1.12	0.791	1.000
l	7	Ø	5∕6	6.6	1.94	3.04	1.05	1.25	1.09	3.04	1.05	1.25	1.09	0.795	1.000
-	L 4×3½×	1/2	15/16	11.9	3.50	5,32	1.94	1.23	1.25	3.79	1.52	1.04	1.00	0.722	0.750
		7/18	7/6	10.6	3.09	4.76	1.72	1.24	1.23	3.40	1.35	1.05		0.724	0.753
Ì		3/6	13/16	9.1	2.67	4.18	1.49	1.25		2.95	1.17	1.06	0.955	0.727	0.755
ĺ		5/16	3/4	7.7	2.25	3.56	1.26	1.26	1.18	2.55	0.994	1.07	0.932	0.730	0.757
Ţ		1/4	11/16	6.2	1.81	2.91	-1.03	1.27	1.16	2.09	0.808	1.07	0.909	0.734	0.759
ı															
1															
ļ								,							
Ĭ										,					
ı				- ]				١,							. I
				İ											
l															
		- 1	,												
1															
L								Li	L						





Size and		k	Weight per	Area		AXIS 2	X-X			AXIS	Y-Y		AXIS	Z-Z
Thickness		"	Ft	11,00	I	S	r	у	I	S	r	Х	r	Tan
ln.		In.	Lb.	in.²	In.4	In. ³	ln.	In.	In.⁴	In. ³	In.	In.	In.	α
L4 ×3 ×	1/2	15/ ₁₀	11.1	3.25	5.05	1.89	1.25	1.33	2.42	1.12	0.864	0.827	0.639	0.543
	1/18	7∕e	9.8	2.87	4.52		1.25	1.30	2.18	0.992	0.871	0.804	0.641	0.547
	%	13/16	8.5	2.48	3.96			1.28	1.92	0.866	0.879	0.782	0,644	0.551
	5/18	3/4	7.2	2.09	3.38			1.26	1.65	0.734	0.887	0.759	0.647	0.554
	1/4	11/10	5.8	1.69	2.77	1.00	1.28	1.24	1.36	0.599	0.896	0.736	0.651	0.558
L 3½×3½×	1/2	7∕8	11.1	3.25	3.64	1.49	1.06	1.06	3.64	1.49	1.06	1.06	0.683	1.000
	1/16	13/16	9.6	2.87	3.26	1.32		1.04	3.26	1.32	1.07	1.04	0.684	1.000
	%	3/4	8.5	2.48	2.87	1.15	1.07	1.01	2.87	1.15	1.07	1.01	0.687	1.000
	√16	11/18	7.2	2.09	2.45	0.976	1.08	0.990		0.976	1.08	0.990	0.690	1.000
	1/4	5∕8	5.8	1.69	2.01	0.794	1.09	0.968	2.01	0.794	1.09	0.968	0.694	1.000
L 3½×3 ×	1/2	15/18	10.2	3.00	3.45	1.45	1.07	1.13	2,33	1.10	0.881	0.875	0.621	0.714
	7/18	7/6	9.1	2.65	3.10			1.10	2.09	0.975	0.889	0.853	0.622	0.718
	1/8	13/10	7.9	2.30	2.72			1.08	1.85	0.851	0.897	0.830	0.625	0.721
	5/18	3/4	6.6	1.93	2.33	0.954	1.10	1.06	1.58	0.722	0.905	0.808	0.627	0.724
	1/4	11/15	5.4	1.56	1.91	0.776	1.11	1.04	1.30	0.589	0.914	0.785	0.631	0.727
L 3½×2½×	1/2	15/16	9.4	2.75	3.24	1.41	1.09	1.20	1.36	0.760	0.704	0.705	0.534	0.486
	7/18	7∕8	8.3	2.43	2.91	1.26	1.09	1.18	1.23	0.677	0.711	0.682	0.535	0.491
	3/8	13/10	7.2	2.11	2.56	1.09	1.10	1.16	1.09	0.592	0.719	0.660	0.537	0.496
	5/16	3/4	6.1	1.78	2.19			1.14	0.939	0.504	0,727	0.637	0.540	0.501
	1/4	11/18	4.9	1.44	1.80	0.755	1.12	1.11	0.777	0.412	0.735	0,614	0.544	0.506
L3 ×3 ×	1/2	13/18	9.4	2.75	2.22	1.07	0.698	0.932	2.22	1.07	0.898	0.932	0.584	1.000
	7/18	3/4	8.3	2.43	1.99	0.954		1		0.954	0.905		1	1.000
	%	11/18	1	2.11	1.76	0.833				0.833	0.913	0.888	0.587	1.000
	1/19	5/4	6.1	1.78	1.51	0.707				0.707	0.922	0.065		1.000
	1/4	<b>9</b> ∕18	4.9	1.44	1.24	0.577				0.577	0.930		0.592	1.00
	%16	1/2	3.71	1.09	0.962	0.441	0.939	0.820	0.962	0.441	0.939	0.820	0.596	1.00
								1						1
				١.										
						1								
							]				1			1
				1		1	1							1
													İ	
		Ì												l



# ANGLES Equal legs and unequal legs Properties for designing

Size and	k	Weight per	Area		AXIS :	X-X			AXIS	Y-Y		AXIS	Z-Z
Thickness		Ft		I	s	Γ	у	I	S	ľ	х	r	Tan
In. '	ln.	Lb.	1n.²	In.⁴	In. ³	ln,	in.	In.⁴	In.3	ln.	ln.	In.	α
L3 ×21/2× 1/2	7/8	8.5	2.50	2.08	1.04	0.913	1.00	1.30	0.744	0.722	0.750	0.520	0.667
7/15	13/16	7.6	2.21	1.88	0.928				0.664	0.729	0.728	0.521	0.672
3/8	3/4	6.6	1.92	1.66	0.810	1 1			0.581	0.736	0.706	0.522	0.676
5/16	11/16	5.6	1.62	1.42				0.898	0.494	0.744	0.683	0.525	0.680
1/4	5∕8	4.5	1.31	1.17	0.561			0.743	0.404	0.753	0.661	0.528	0.684
3/16	9/16	3.39	0.996	0.907	0.430	0.954	888.0	0.577	0.310	0.761	0.638	0.533	0.688
L3 ×2 × ½	13/18	7.7	2.25	1.92	1.00	0.924	1.08	0.672	0.474	0.546	0.583	0.428	0.414
7/16	3/4	6.8	2.00	1.73	0.894	0.932	1.06	0.609	0.424	0.553	0.561	0.429	0.421
3/₃	11/16	5.9	1.73	1.53	0.781	0.940	1.04	0.543	0.371	0.559	0.539	0.430	0.428
<del>5</del> /18	5/8	5.0	1.46	1.32	0.664	0.948	1.02	0.470	0.317	0.567	0.516	0.432	0.435
1/4	%18	4.1	1.19	1.09				0.392	0.260	0.574	0.493	0.435	0.440
%6	1/2	3.07	0.902	0.842	0.415	0.966	0.970	0.307	0.200	0.583	0.470	0.439	0.446
L 2½×2½× ½	13/16	7.7	2.25	1.23	0.724	0.739	0.806	1.23	0.724	0.739	0.806	0.487	1.000
3/6	11/18	5.9	1.73	0.984				0.984	0.566	0.753	0.762	0.487	1.000
5/16	5/8	5.0	1,46	0.849	0.482	0.761	0.740	0.849	0.482	0.761	0.740	0.489	1.000
1/4	9/16	4.1	1.19	0.703	0.394	0.769	0.717	0.703	0.394	0.769	0.717	0.491	1.000
3∕16	1/2	3.07	0.902	0.547	0.303	0.778	0.694	0.547	0.303	0.778	0.694	0.495	1.000
L21/2×2 × 3/6	11/18	5.3	1.55	0.912	0.547	0.768	0.831	0.514	0.363	0.577	0.581	0.420	0.614
5/16	5/6	4.5	1.31	0.788		0.776	0.809	0.446	0.310	0.584	0.559	0.422	1
<b>У</b> ₄	%16	3.62	1.06	0.654				0.372	0.254	0.592	0.537	0.424	0.626
3∕16	1/2	2.75	0.809	0.509	0.293	0.793	0.764	0.291	0.196	0.600	0.514	0.427	0.631
L2 ×2 × %	%	4.7	1.36	0.479	0.351	0.594	0.636	0.479	0.351	0.594	0.636	0.389	1.000
5/18	%16	3.92	1.15	0.416	0.300	0.601	0.614	0.416	0.300	0.601	0.614	0.390	1.000
1/4	1/2	3.19	0.938	0.348				0.348		0.609	0.592	0.391	1.000
3/10	7/18	2.44	0.715	1	E .	1		0.272	0.190	0.617	0.569	0,394	1.000
1/8	3/8	1.65	0.484	0.190	0.131	0.626	0.546	0.190	0.131	0.626	0.546	0.398	1.000
								Ì					
				ľ									
		-											
				1		-							
					Ì								
	-												
ļ					1	1							

Table C-36
Allowable Stress
For Compression Members of 36-ksi Specified Yield Stress Steel^a

l				<del>, .</del>						
1	KI	F ₂	<u>KI</u>	F _R	<u>KI</u>	F ₂	<u>K/</u>	F _a	<u>KI</u>	F _a
1	r	(ksi)	r	(ksi)	г	(ksi)	г	(ksi)	r	(ksi)
ľ	1	21.56	41	19.11	81	15.24	121	10.14	161	5.76
1	2	21.52	42	19.03	82	15.13	122	9.99	162	5.69
-	-3	21.48	43	18.95	83	15.02	123	9.85	163	5.62
ł	4	21.44	44	18.86	84	14.90	124	9.70	164	5.55
İ	- 5	21.39	45	18.78	85	14.79	125	9.55	165	5.49
۱,	6	21.35	46	18.70	86	14.67	126	9.41	166	5.42
١	7	21.30	47	18.61	87	14.56	127	9.26	167	5.35
ı	8	21.25	48	18.53	88	14.44	128	9.11	168	5.29
	9	21.21	49	18.44	89	14.32	129	8.97	169	5.23
İ	10	21.16	50	18.35	90	14.20	130	8.84	170	5.17
	11	21.10	51	18.26	91	14.09	131	8.70	171	5.11
	12	21.05	52	18.17	92	13.97	132	8.57	172	5.05
	13	21.00	53	18.08	93	13.84	133	8.44	173	4.99
	14	20.95	54	17.99	94	13.72	134 135	8.32 8.19	174 175	4.93 4.88
	15	20.89	55	17.90	95	13.60			1/5	1
	16	20.83	56	.17.81	96	13.48	136	8.07	176	4.82
	17	20.78	57	17.71	97	13.35	137	7.96	177	4.77
	18	20.72	58	17.62	98	13.23	138 139	7.84 7.73	178 179	4.71 4.66
	19	20.66	59	17.53 17.43	99 100	13.10 12.98	140	7.73 7.62	180	4.61
	20	20.60	60	17.43	100	12.30		:		
	21	20.54	61	17.33	101	12.85	141	7.51	181	4.56
	22	20.48	62	17.24	102	12.72	142	7.41	182	4.51 4.46
	23	20.41	63	17.14	103	12.59	143 144	7.30 7.20	183 184	4.40
	24	20.35	64 65	17.04 16.94	104 105	12.47 12.33	145	7.10	185	4.36
	25	20.28	65	10.54						
	26	20.22	66	16.84	106	12.20	-146	7.01	186	4.32
	27	20.15	67	16.74	107	12.07	147 148	6.91 6.82	187 188	4.27 4.23
	28	20.08	68	16.64 16.53	108 109	11.94 11.81	149	6.73	189	4.18
	29 30	20.01 19.94	69 70	16.43	110	11.67	150	6.64	190	4.14
	1		1000000		l .					4.00
	31	19.87	71	16.33	111	11.54	151	6.55 6.46	191 192	4.09 4.05
	32	19.80	72	16.22 16.12	112 113	11.40 11.26	152 153	6.38	193	4.01
	33	19.73	73	16.01	114	11.13	154	6.30	194	3.97
	34 35	19.65 19.58	75	15.90	115	10.99	155	6.22	195	3.93
	ł				į.		Ì			
	36	19.50	76	15.79	116	10.85	156	6.14 c.oc	196	3.89 3.85
	37	19.42	77	15.69	117 118	10.71 10.57	157 158	6.06 5.98	197 198	3.81
	38	19.35	78 79	15.58 15.47	118	10.57	159	5.91	199	3.77
	39 40	19.27 19.19	80	15.47	120	10.48	160	5.83	200	3.73
	40	13,13	50	.0.00	'	, 00				•
		-		•			1	•		
	<b></b>		1	M * . t				oction limi	to of Soci	B5 1

 $^{\rm a}$  When element width-to-thickness ratio exceeds noncompact section limits of Sect. B5.1, see Appendix B5. Note:  $C_{\rm c}=126.1$ 

# BOLTS, THREADED PARTS AND RIVETS Tension Allowable loads in kips

## TABLE I-A. BOLTS AND RIVETS Tension on gross (nominal) area

			Nominal Diameter d, In.						
ASTM	F _t	5/8	3/4	7/8	1	11/8	11/4	13/8	11/2
Designation	Ksi		Area (Based on Nominal Diameter), In. ²						
		0.3068	0.4418	0.6013	0.7854	0.9940	1.227	1.485	1.767
A307 bolts	20.0	6.1	8.8	12.0	15.7	19.9	24.5	29.7	35.3
A325 bolts	44.0	13.5	19.4	26.5	34.6	43.7	54.0	65.3	77.7
A490 bolts	54.0	16.6	23.9	32.5	42.4	53.7	66.3	80.2	95.4
A502-1 rivets	23.0	7.1	10.2	13.8	18.1	22.9	28.2	34.2	40.6
A502-2,3 rivets	29.0	8.9	12.8	17.4	22.8	28.8	35.6	43.1	51.2

The above table lists ASTM specified materials that generally are intended for use as structural fasteners.

For dynamic and fatigue loading, only A325 or A490 high-strength bolts should be specified. See AISC Specification. Appendix K4.

For allowable combined shear and tension loads, see AISC ASD Specification Sects.  ${\sf J3.5}$  and  ${\sf J3.6}$ .

## TABLE I-B. THREADED FASTENERS Tension on gross (nominal) area

		Nominal Diar						meter c	/, ln.		
ASTM	Fy	F.,	Ft	5/8	3/4	7/8	1	11/8	11/4	13/8	11/2
Designation	Ksi	ksi	ksi	Area (Based on Nominal Diameter					ameter)	. In.²	
		ļ 		0.3068	0.4418	0.6013	0.7854	0.9940	1.227	1.485	1.767
A36	36	58	19.1	5.9	8.4	11.5	15.0	19.0	23.4	28.4	33.7
A572, Gr. 50	50	65	21.5	6.6	9.5	12.9	16.9	21.4	26.4	31.9	38.0
A588	50	70	23.1	7.1	10.2	13.9	18.1	23.0	28.3	34.3	40.8
A449 d≤1 1 <d≤1½< td=""><td>92 81</td><td>120 105</td><td>39.6 34.7</td><td>12.1</td><td>17.5 —</td><td>23.8</td><td>31.1</td><td> 34.5</td><td><u>-</u> 42.6</td><td> 51.5</td><td> 61.3</td></d≤1½<>	92 81	120 105	39.6 34.7	12.1	17.5 —	23.8	31.1	 34.5	<u>-</u> 42.6	 51.5	 61.3

The above table lists ASTM specified materials available in round bar stock that are generally intended for use in threaded applications such as tie rods, cross bracing and similar uses. The tensile capacity of the threaded portion of an upset rod shall be larger than the body area times  $0.6\mathcal{E}$ .

 $F_u$  = specified minimum tensile strength of the fastener material.

 $F_t = 0.33F_u = \text{allowable tensile stress in threaded fastener.}$ 

### CHAPTER E

## COLUMNS AND OTHER COMPRESSION MEMBERS

This section applies to prismatic members with compact and noncompact sections subject to axial compression through the centroidal axis. For members with slender elements, see Appendix B5.2. For members subject to combined axial compression and flexure, see Chap. H. For tapered members, see Appendix F7.

### E1. EFFECTIVE LENGTH AND SLENDERNESS RATIO

The effective-length factor K shall be determined in accordance with Sect. C2.

In determining the slenderness ratio of an axially loaded compression member, the length shall be taken as its effective length Kl and r as the corresponding radius of gyration. For limiting slenderness ratios, see Sect. B7.

### **E2. ALLOWABLE STRESS**

On the gross section of axially loaded compression members whose cross sections meet the provisions of Table B5.1, when Kl/r, the largest effective slenderness ratio of any unbraced segment is less than  $C_c$ , the allowable stress is:

$$F_a = \frac{\left[1 - \frac{(Kl/r)^2}{2C_c^2}\right] F_y}{\frac{5}{3} + \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)^3}{8C_c^3}}$$
(E2-1)

where

$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$$

On the gross section of axially loaded compression members, when Kl/r exceeds  $C_c$ , the allowable stress is:

$$F_a = \frac{12\pi^2 E}{23(Kl/r)^2}$$
 (E2-2)

### E3. FLEXURAL-TORSIONAL BUCKLING

Singly symmetric and unsymmetric columns, such as angles or tee-shaped columns, and doubly symmetric columns such as cruciform or built-up columns with very thin walls, may require consideration of flexural-torsional and torsional buckling.

the top of the column. On the other hand, the restraining influence of foundations, even where these footings are designed only for vertical load, can be very substantial in the case of flat-ended column base details with ordinary anchorage (Stang and Jaffe, 1948). For this condition, a design K-value of 1.5 would generally be conservative in Case f.

While in some cases the existence of masonry walls provides enough lateral support for their building frames to control lateral deflection, the increasing use of light curtain wall construction and wide column spacing for high-rise structures not provided with a positive system of diagonal bracing can create a situation where only the bending stiffness of the frame itself provides this support.

Table C-C2.1

	, (25)					
Buckled shape of column is shown by dashed line	(a)	(b)	(c)	(d)	(e)	(C)
Theoretical K value	0.5	0.7	1.0	1.0	2.0	2.0
Recommended design value when ideal condi- tions are approximated	0.65	0,80	1.2	1.0	2.10	2.0
End condition code		Rota Rota	ation fixed ation free ation fixed ation free	and tran	slation f nslation	ixed free



Figure C-C2.1

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

### Structural Assessment of a Hazardous Waste-Storage Tank for Hukill Chemical Company

### EQUASIONS FOR RETAINING WALL DESIGN



w= 8 h

W= FORCE AT BASE OF WALL (15/FT)

Y= WEIGHT OF CONTAINED LIQUID (16/CU. FT.)

h= HEIGHT OF CONTAINED LIQUID (FT)

P = W × 12 h = Wh × 12 h = 12 W h 2 P = RESULTANT FORCE OF KONTAINED LIQUID

MoT = PX/3 h

M = OVERTURNING MOMENT AT BASE OF WALL

### STRESSES IN CYLINDRICAL SHELL

Uniform internal or external pressure induces in the longitudinal seam a unit stress two times larger than in the circumferential seam because of the geometry of the cylinder.

A vessel under external pressure, when other forces (wind, earthquake, etc.) are not factors, must be designed to resist the circumferential buckling only. The Code provides the method of design to meet this requirement. When other loadings are present, these combined loadings may govern and heavier plate will be required than the plate which was satisfactory to resist the circumferential buckling only.

The formulas below give the compression stress due to external pressure and tension stress due to internal pressure.



FORMU	JLAS
CIRCUMFERENTIAL JOINT	LONGITUDINAL JOINT
$S_1 = \frac{PD}{4t}$	$s_2 = \frac{PD}{2t}$

### NOTATION

D = Mean diameter of vessel, inches
 P = Internal or external pressure, psi

S₁ = Longitudinal stress, psi

S2 = Circumferential (hoop) stress, psi
 t = Thickness of shell, corrosion allowance excluded, inches

### **EXAMPLE**

$$S_1 = \frac{PD}{4t} = \frac{15 \times 96}{4 \times 0.25} = 1440 \text{ psi}$$

$$S_2 = \frac{PD}{2t} = \frac{15 \times 96}{2 \times 0.25} = 2880 \text{ psi}$$

### INTERNAL PRESSURE

### FORMULAS IN TERMS OF INSIDE DIMENSIONS

- DESIGN PRESSURE OR MAX. ALLOWABLE WORKING PRESSURE PSI.
- STRESS VALUE OF MATERIAL PSI. PAGE 126
- JOINT EFFICIENCY, PAGE 112
- INSIDE RADIUS, INCHES
- INSIDE DIAMETER, INCHES ONE HALF OF THE INCLUDED (APEX) ANGLE, DEGREES
- INSIDE RADIUS OF DISH, INCHES
- INSIDE KNUCKLE RADIUS, INCHES WALL THICKNESS, INCHES

1.00

7.00

 $L_{/\underline{t}}$ 

1.06

8.00

CORROSION ALLOWANCE, INCHES C.A. =



1.18

12.0

1.62

16.0

### INTERNAL PRESSURE

### FORMULAS IN TERMS OF OUTSIDE DIMENSIONS

- P = DESIGN PRESSURE OR MAX. ALLOWABLE WORKING PRESSURE PSI
- S = STRESS VALUE OF MATERIAL PSI ,PAGE 126
- E = JOINT EFFICIENCY PAGE 112
- R = OUTSIDE RADIUS, INCHES
- D = OUTSIDE DIAMETER, INCHES
- t = WALL THICKNESS, INCHES
- C.A. = CORROSION ALLOWANCE, INCHES

Α

### CYLINDRICAL SHELL (LONG SEAM)1



$$t = \frac{PR}{SE + 0.4P}$$

$$P = \frac{SE t}{R - 0.4t}$$

- Usually the stress in the long seam is governing. See page 7.
- When the wall thickness exceeds one half of the inside radius or P exceeds 0.385 SE, the formulas given in the code UA 2 shall be applied.

В

### SPHERE and HEMISPHERICAL HEAD



$$t = \frac{PR}{2SE + 0.8P}$$

$$P = \frac{2 \text{ SE t}}{R - 0.8t}$$

- For heads without a straight flange, use the efficiency of the head to shell joint if it is less than the efficiency of the seams in the head.
- When the wall thickness exceeds 0.356 R or P exceeds 0.665 SE, the formulas given in the code UA. 3. shall be applied.

C

### 2:1 ELLIPSOIDAL HEAD



$$t = \frac{PD}{2SE + 1.8F}$$

$$P = \frac{2 \text{ SE t}}{D - 1.8t}$$

 For ellipsoidal heads, where the ratio of the major and minor axis is other than 2:1, see Code UA.4(C).

### STRESSES IN VESSELS ON TWO SADDLES



### NOTATION:

girth seam.

3K₆Q

215

12K6QR

41s(b+1.56\R1s)

41s(b+1.56\Ris)

 $t_s(b+1.56\sqrt{R}t_s)$ 

All dimensions in inches

Q = Load on one saddle lbs.

R = Radius of shell

S = Stress pound per sq. inch

ts = Wall thickness of shell

th = Wall thickness of head

(Excluding corresion allow.)

= Constant, see page 76.

 $\theta$  = Contact angle of saddle degree Max. Allow. Stress

		Q	
Stress	Condi- tions	Max. Stress Occurs	FORMULAS
LONGITUDINAL BENDING	SHELL STIFFENED BY HEADS OR RINGS OR SHELL UNSTIFFENED	AT THE SADDLES (Tension at the Top. Compression at the Bottom)	$QA\left(1 - \frac{1 - \frac{A}{L} + \frac{R^2 - H^2}{2AL}}{1 + \frac{4H}{3L}}\right)$ $S_1 = \pm \frac{KR^2 t_S}{\text{*See note on facing page}}$
LONGITUDIN	SHELL STIFFE OR RINGS OR SHE	AT MIDSPAN (Tension at the Top, Compression at the Bollom)	$S_{1} = \pm \frac{QL}{4} \left( \frac{1 + 2\frac{R^{2} - H^{2}}{L^{2}}}{1 + \frac{4H}{3L}} - \frac{4A}{L} \right)$
	vay From > R/2	IN SHELL	$S_2 = \frac{K_2 Q}{Rt_S} \left( \frac{L - 2A}{L + \frac{4}{3} H} \right)$
HEAR	Saddles Away From Head A > R/2 See Note	SHEFF IM	$S_2 = \frac{K_3 Q}{Rt_s} \left( \frac{L - 2A}{L + \frac{4}{3} H} \right)$
TANGENTIAL SHEAR	OHEAD	IN SHELL	$S_2 = \frac{K_4 Q}{Rt_S}$
TANGE	SADDLES CLOSE TO HEAD A ≤ R/2	IN HEAD	$S_2 = \frac{K_4 Q}{Rt_h}$
	SADDLE	ADDI- TIONAL STRESS IN HEAD	$S_3 = \frac{K_5 Q}{Rt_h}$

HORN

OF

SADDLE

BOTTOM

SHELL

S.R

ᆁ

< 8R

### In tension S1 plus the stress due to internal pressure (PR/2ts) shall not exceed the allowable stress value of shell material times the efficiency of

In compression the stress due to internal pressure minus S1 shall not exceed one half of the compression yield point of the material or the value given by:

$$S_1 \geq \left(\frac{E}{29}\right)(t/R)[2-(2/3)(100)(t/R)]$$

S2 shall not exceed 0.8 times the allowable stress value of vessel ma-

Sa plus stress due to internal pressure shall not exceed 1.25 times the allowable tensile stress value of head material.

NOTE: Use formula with factor K2 if ring not used or rings are adjacent to the saddle. Use formula with factor Ka If ring used in plane of saddle.

### S4 shall not exceed 1.50 times the allowable tensile stress value of shell

Ss shall not exceed 0.5 times the compression yield point of shell ma-

### STRESSES IN VESSELS ON TWO SADDLES

### NOTES:

BENDING

LONGITUDINAL

SHEAR

TANGENTIAL

CIRCUMFERENTIAL

Positive values denote tensile stresses and negative values denote compression.

E = Modulus of elasticity of shell or stiffener ring material pound per square inch.

### The maximum bending stress S₁ may be either tension or compression.

Computing the tension stress in the formula for S1, for factor K the values of K₁ shall be used.

Computing the compression stress in the formula for S₁, for factor K the values of Ka shall be used.

When the shell is stiffened, the value of factor K = 3.14 in the formula for  $S_1$ .

The compression stress is not factor in a steel vessel where t/R ₹0.005 and the vessel is designed to be fully stressed under internal pressure.

Use stiffener ring if stress S₁ exceeds the maximum allowable stress.

### If wear plate is used, in formulas for $S_2$ for the thickness $t_s$ may be taken the sum of the shell and wear plate thickness, provided the wear plate extends R/10inches above the horn of the saddle near the head and extends between the saddle and an adjacent stiffener ring.

In unstiffened shell the maximum shear occurs at the horn of the saddle. When the head stiffness is utilized by locating the saddle close to the heads, the tangential shear stress can cause an additional stress (S3) in the heads. This stress shall be added to the stress in the heads due to internal pressure.

When stiffener rings are used, the maximum shear occurs at the equator.

### If wear plate is used, in formulas for S4 for the thickness ts may be taken the sum of the shell and wear plate thickness and for to may be taken the shell thickness squared plus the wear plate thickness squared, provided the wear plate extends R/10 inches above the horn of the saddle near the head. The combined circumferential stress at the top edge of the wear plate should also be checked. When checking at this point: $t_s = shell$ thickness, b = width of saddle $\theta = central angle of the wear plate but not more$

than the included angle of the saddle plus 12°

If wear plate is used, in formulas for S5 for the thickness to may be taken the sum of the shell and wear plate thickness, provided the width of the wear plate equals at least b + 1.56 $\sqrt{Rt_s}$ .

If the shell is not stiffened, the maximum stress occurs at the horn of the saddle.

This stress is not be to added to the internal pressure-stress. In a stiffened shell the maximum ring-compression is at the bottom of shell. Use stiffener ring if the circumferential bending stress exceeds the maximum allowable stress.

### STRESSES IN LARGE HORIZONTAL VESSELS SUPPORTED BY TWO SADDLES

### VALUES OF CONSTANT K (Interpolate for Intermediate Values)

* $K_1 = 3.14$  if the shell is stiffened by ring or head (A  $\leq R/2$ )

\							<del></del>	
CONTACT ANGLE $\theta$	K ₁ *	К2	К3	.: K4	К5	К6	К7	К8
120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180	0.335 0.345 0.355 0.366 0.376 0.387 0.398 0.409 0.420 0.432 0.443 0.455 0.467 0.480 0.492 0.505 0.518 0.531 0.557 0.571 0.585 0.627 0.642 0.657 0.627 0.627 0.687 0.702 0.718			0.880 0.846 0.813 0.781 0.751 0.722 0.694 0.667 0.641 0.592 0.569 0.547 0.526 0.505 0.485 0.466 0.413 0.413 0.396 0.380 0.365 0.350 0.365 0.350 0.322 0.309 0.296 0.283 0.271 0.260	0.401 0.393 0.385 0.377 0.369 0.362 0.355 0.347 0.320 0.314 0.308 0.301 0.295 0.283 0.278 0.272 0.266 0.261 0.256 0.250 0.245 0.240 0.235 0.230 0.225 0.220 0.216		0.760 0.753 0.746 0.739 0.732 0.726 0.720 0.714 0.708 0.702 0.697 0.692 0.687 0.682 0.678 0.669 0.665 0.661 0.657 0.654 0.635 0.643 0.635 0.632 0.629 0.624	0.603 0.618 0.634 0.651 0.669 0.689 0.705 0.722 0.740 0.759 0.780 0.813 0.831 0.853 0.876 0.894 0.913 0.933 0.954 0.913 1.033 1.054 1.079 1.097 1.116 1.137 1.158 1.183
1	1		1		_l			_!

# STRESSES IN LARGE HORIZONTAL VESSELS SUPPORTED BY TWO SADDLES VALUES OF CONSTANT K₆ RATIO A/R



### WELDED JOINTS

	YPES E UW-12	JOINT a. Wh Fully Radio- graphed	EFFICIEN en the Joint b. Spot Examined	CY, E : c. Not Examined
1	Butt joints as attained by double-welding or by other means which will obtain the same quality of deposited weld metal on the inside and outside weld surface.  Backing strip if used shall be removed after completion of weld.	1.00	0.85	0.70
2 For circumferential joint only	Single-welded butt joint with backing strip which remains in place after welding	0.90	0.80	0.65
3	Single-welded butt joint without use of backing strip			0.60
4	Double-full fillet lap joint	<u>-</u>		0.55
5	Single-full fillet lap joint with plug welds	-	_	0.50
6	Single full fillet lap joint without plug welds			0.45

### WELDED JOINTS

### LIMITATIONS IN APPLYING VARIES WELD TYPES

### FOR TYPE 1 NONE

### FOR TYPE 2 NONE Except butt weld with one plate offset - for circumferential joints only.

FOR TYPE 3 Circumferential joints only, not over 5/8 in. thick and not over 24 in. outside diameter.

FOR TYPE 4 Longitudinal joints not over 3/8 in. thick. Circumferential joints not over 5/8 in. thick.

### FOR TYPE 5

Circumferențial joints* (a) Circumferential joints*
for attachment of heads not over 24 in, outside diameter to shells not over 1/2 in.

thick. Circumferential joints for the attachment to shells of jackets not over 5/8 in. in nominal thickness where the distance from the center of the plug weld to the edge of the plate is not less than 1-1/2 times the diameter of the hole for the plug.
*Joints attaching hemispherical heads to shells are excluded.

### FOR TYPE 6

For the attachment of heads convex to pressure to shells not over 5/8 in. required thickness, only with use of fillet weld on inside of shell; or (b) for attachment of neads having pressure on either side, to shells not over 24 in. inside diameter and not over 1/4 in, required thickness with fillet weld on outside of head flange only.

### NOTES

1. In this table are shown the types of welded joints which are permitted by the code in arc and gas welding processes.

2. The shape of the edges to be joined by butt-weld shall be such as to permit complete fusion and penetration.

3. Butt joints shall be free from undercuts, overlaps and abrupt ridges and valleys. To assure that the weld-grooves are completely filled, weld metal may be built up as reinforcement. The thickness of the reinforcement shall not exceed the following thick-

Maximum reinf. in. Plate thickness in. 3/32 up to 1/2 incl. over 1/2 to 1 incl. 3/16 over 1

4. Before welding the second side of a double welded butt joint, the impurities of the first side welding shall be removed by chipping, grinding or molting out to secure sound metal for complete penetration and fusion. For submerged are welding, chipping out a groove in the crater is recommend-

5. The maximum allowable joint efficiencies given in this table are to be used in calculations of the loadings, when the joints made by arc or gas welding processes.

6. The code restricts the use of welded joints to certain types for vessels in the following services: a. When vessels are to contain lethal substances

When vessels are to operate below -20F Unfired steam boilers with design pressures

exceeding 50 psi. Pressure vessels subject to direct firing (Code

7. The following butt welded joints shall be examined radiographically for their full length.

a. Joints in vessels used to contain lethal substan-

b. Joints in which the thinner of the plate at the welded joint exceeds 1-1/2 in. or exceeds the lesser thickness prescribed in UCS-57 (e.g. for P-1 materials 1-1/4 in.)

c. Joints in unfired steam boilers, the design pres-

sure of which exceeds 50 psi.

d. Joints in nozzles, communicating chambers, etc. in vessel or vessel section that is required to be radiographed under a, b, and c. [See

UW-11 (4) ].

8. If the vessel is spot radiographed the seamless vessel sections and heads joined with but welds shall be designed using a stress value equal to 85 percent of the allowable stress value prescribed for the material UW-12 (b). See example on the

following page,

9. If the vessel radiographically is not examined, and the joint efficiencies given in column (c) are used in all other than welded joint calculation, a stress value equal to 80 percent allowed for the material shall be used. UW-12 (c). See example on the following page.

### VOLUME OF SHELL & HEADS

I.D.	A	SME F &	D. HEAD	*		HEMIS.	HEAD*	
of Vessel in.	Cu.Ft.	Gal.	Bbl.	Wt. of Water lb.	Cu.Ft.	Gal.	Bbl.	Wt. of Water lb.
12	0.08	0.58	0.01	4.83	0.26	1.96	0.05	16.34
14	0.12	0.94	0.02	7.83	0.42	3.11	0.07	25.95
16	-0.19	1.45	0.03	12.08	0.62	4.64	0.11	38.74
81	0.27	2.04	0.05	17.00	0.88	6.61	0.16	55.16
20	0.37	2.80	0.07	28.33	1.21	9.07	0.22	75.66
22	0.50	3.78	0.09	31.49	1.61	12.07	0.29	100.7
24	0.65	4.86	0.12	40.49	2.09	15.67	0.37	130.7
26	0.82	6.14	0.15	51.15	2,66	19.92	0.47	166.2
28	1.10	8.21	0.20	68.40	3.33	24.88	0.59	207.6
30	1.30	9.70	0.23	80.81	4.09	30.60	0.73	255.4
32	1.64	12.30	0.29	102.5	4.96	37.14	0.88	309.9
34	1.88	14.10	0.34	117.5	5.95	44.54	1.06	371.7
36	2.15	16.10	0.38	134.1	7.07	52.88	1.26	441.2
38	2.75	20.60	0.49	171.6	8.31	62.19	1.48	519.0
40	3.07	23.00	0.55	191.6	9.70	72.53	1.73	605.3
42	3.68	27.50	0.65	229.1	11.22	83.97	2.00	700.7
48	5.12	38.30	0.91	319.1	16.76	125.3	2.98	1046
54	7.30	54.60	1.30	454.9	23.86	178.5	4.25	1489
60	10.08	75.40	1.80	628.2	32.73	244.8	5.83	2043
66	13.54	101	2.41	843.9	43.56	325.8	7.76	2719
72	17.65	132	3.14	1100	56.55	423.0	10.07	3530
78	22.32	167	3.98	1391	71.90	537.8	12.80	4488
84	28.47	213	5.07	1775	89.80	671.7	16.00	5606
90	35.56	266	6.33	2216	110.4	826.2	19.67	6895
96	42.51	318	7.57	2649	134.0	1003	23.87	8368
102	52.14	390	9.29	3249	160.8	1203	28.63	10037
108	60.96	456	10.86	3799	190.9	1428	34.00	11914
114	73.66	551	13.12	4590	224.5	1679	39.98	14012
120	84.35	631	15.02	5257	261.8	1958	46.63	16343
126	97.32	728	17.33	6065	303.1	2267	53.98	18919
132	108.7	813	19.36	6773	348.5	2607	62.06	21752
138	127.0	950	22.62	7915	398.2	2978	70.91	24856
144	147.9	1106	26.33	9214	452.4	3384	80.57	28241

*Volume within the straight flange is not included

AREA OF	SURFACES
(In Squa	ire Feet)

		·			•
Outside Diameter of Vessel D inches	Cylindrical Shell per Lineal Foot (π x D)	2:1 Ellipsoidal Head (1.09 x D ² )	ASME Flanged and Dished Head (0.918 x D ² )	Hemis- pherical Head (1.5708 x D ² )	Flat Head (0.7854 x D ² )
12	3.14	1.09	0.92	1.57	0.79
14	3.66	1.48	1.25	2.14	1.07
16	4.19	1.94	1.64	2.79	1.40
18	4.71	2.45	2.07	3.53	1.77
20	5.23	3.02	2.56	4.36	2.18
22	5.76	3.66	3.10	5.28	2.64
24	6.28	4.36	3.68	6.28	3.14
26	6.81	5.12	4.32	7.08	3.69
28	7.32	5.92	5.00	8.55	4,28
30	7.85	6.81	5.76	9.82	4.91
32	8.37	7.76	6.53	11.17	5.58
34	8.90	8.75	7.39	12.11	6.31
36	9.43	9.82	8.29	14.14	7.07
38	9.94	10.93	9.21	15.75	7.88
40	10.47	12.11	10.20	17.44	8.72
42	11.00	13.35	11.25	19.23	9.62
48	12.57	17.47	14.70	25.13	12.57
54	14.14	22.09	18.60	.31.81	15.90
60	15.71	27.30	23.60	39.27	19.64
66	17.28	33.10	27.80	47.52	23.76
72	18.85	39.20	33.00	56.55	28.27
78	20.42	46.00	38.85	66.37	33.18
84	21.99	53.40	45.00	76.97	38.49
90	23.56	61.20	51.60	88.37	44.16
96	25.20	69.80	58.90	100.54	50.27
102	26.70	78.80	66.25	113.43	56.25
108	28.27	88.25	74.35	127.25	63.62
114	29.85	98.25	83.00	141.78	70.88
120	31.50	109.00	92.00	157.08	78.87
126	32.99	120.11	100.85	173.20	86.59
132	34.56	132.00	111.50	190.09	95.03
138	36.20	144.00	121.50	207.76	102.00
144	37.70	157.00	132.20	226.22	113.50

## Structural Assessment of a Hazardous Waste Storage Tank for Hukill Chemical Company

### <u>Spent Acid System - Spent Acid Tank</u> <u>Exhibit D-9</u>

### Extrapolation of Values for Constant K₈ Reference [19-pg 76]

	θ	K ₈	Difference	Increment
Extrapolated Values	90°	0.382	0.067	
vaiues	100°	0.449	0.067	0.007
•	110°	0.523	0.074	0.006
			0.080	
*	120°	0.603	0.086	0.006
Table Values	130°	0.689		0.005
values	140°	0.780	0.091	0.005
	150°	0.876	0.096	0.004
	160°	0.976	0.100	0.003
			0.103	
	170°	1.079	0.104	0.001
	180°	1.183		

### Structural Assessment of a Hazardous Waste Storage Tank for Hukill Chemical Company

## Spent Acid System - Spent Acid Tank Exhibit D-9

### Extrapolation for Values for Constant K₇ Reference [19-pg 76]

	θ	K ₇	Difference	Increment
Extrapolated	90°	0.899	0.055	
Values	100°	0.846	0.053	0.007
	110°	0.800	0.046	0.006
			0.040	
Table Values	120°	0.760	0.034	0.006
values	130°	0.726		0.005
	140°	0.697	0.029	0.005
	150°	0.673	0.024	0.005
	160°	0.654	0.019	0.002
			0.017	
	170°	0.637	0.013	0.004
	180°	0.624		



July 7, 1988

Hukill Chemical Corporation 7013 Krick Road Bedford, Ohio

Atten: Mr. Ed Price

Hukill Chemical Corporation Tank Farm Expansion Bedford, Ohio EDP/TRIGGS #88166

Gentlemen

We have completed subsurface exploration work for the proposed Tank Farm to be added to Hukill Chemical's existing facility in Bedford, Ohio. Three copies of our "Report of Subsurface Exploration are enclosed for your use and distribution.

We have recommended that the propose tank support/containment slab be supported by conventional strip footings. The footings are to be excavated through any fill to bear on undisturbed soil.

We are ready to provide the necessary plan and specification review and construction observation and testing services as described in this report. These services are important to this project's successful construction and performance.

If you have any questions about the findings or recommendations of this report, or require additional geotechnical services for this project, please call us.

Very truly yours

EDP/TRIGGS Consultants, Inc.

John E. Dingeldein, P.E.

Project Engineer

Alan J. Esser, P.E. Reviewing Engineer

### 1. Scope of Report

This report presents the results of a subsurface exploration for a tank farm addition to the Hukill Chemical Corporation facility in Bedford, Ohio. Subsurface conditions were identified by a field exploration program consisting of 3 borings in the tank foundation area supplemented by borings made during previous explorations at the site. Selected soil samples were tested in the laboratory, and field and laboratory tests were interpreted, resulting in recommendations for foundation design.

### 2. Proposed Project

From information provided by Mr. Ed Price, we understand that a reinforced concrete slab with above grade concrete retaining walls is proposed for construction. The slab will measure approximately 35 feet by 90 feet in plan dimension. It will support up to 16 steel tanks. The above grade retaining walls are designed to help contain leaks or spills. The slab will be located just north of the existing tank farm.

The preceding information represents our understanding of the proposed project, and is an important part of our engineering interpretation of the site explored. If this understanding is not correct or if project conditions change, we must review this report relative to our recommendations.

### 3. Site Conditions

The site is located on the north side of Hukill Chemical Corporation's existing facility at 7013 Krick Road in Bedford, Ohio. The proposed foundation slab will be located adjacent to the north side of the existing farm's earth containment dike. A gravel road passes through the area. A small grass-covered field is located north of the road. Site topography is relatively level in the construction area.

The site is located in a area know for glacial deposits and shallow bedrock. Residual soils are often encountered below the glacial deposits and above bedrock. Existing ground water monitoring wells are located around the site.

### 4. Field Exploration

Subsurface conditions were studied by an exploration program consisting of three new Standard Penetration Test borings supplemented by data from six borings made in 1982. Approximate test locations are shown on the enclosed Boring Location Plans.

Borings were drilled to depths of 15 feet during the current exploration. Due to the near level surface grades on the site, boring elevations were not determined.

The borings were drilled in accordance with ASTM standards. two inch O.D. split-spoon sampler was driven into the soil using a 140 lb. hammer dropping 30 inches. The number of blows required to drive the sampler was recorded for each of three, six inch penetration intervals at each sample location.

Three inch O.D. thin-wall Shelby tube samples were hydraulically pressed at the following locations and depths:

> B-1; 3.5 to 5.5 ft. B-2; 6.5 to 8.5 ft.

Groundwater was not encountered at the time of the exploration.

The results of this field exploration are presented on the enclosed boring logs.

### 5. Laboratory Testing

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Samples were delivered to our laboratory, where they were examined and classified by a geotechnical engineer following ASTM Standards. Selected soil and bedrock samples were then tested according to the following schedule:

### TEST

### SAMPLES

Water Content

A total of 11 split-spoon samples from selected locations

Unconfined Compression, B-1; 4.9 to 5.4 ft. with Unit Weight and

B-2; 7.0 to 7.3 ft.

Water Content

Water content tests are indicators of soil consistency, strength, and compressibility. Unconfined compression tests provide data concerning soil shear strength and bearing capacity. Water contents, unconfined compressive strengths, and dry unit weights are listed on the boring logs. Stress-strain curves from unconfined compression tests are presented on enclosed data sheets

### 6. Subsurface Profile

Based upon the subsurface and laboratory data obtained during the exploration, the soil profile for the tank slab area can be generalized as fill overlying topsoil, glacial till and residual deposits, and shale bedrock.

Fill was encountered at all of the boring locations within the proposed tank farm addition area. Its depth ranged from approximately 1-1/2 feet to 6 feet. The fill material was variable in composition.

Deposits of glacial and residual soils were encountered beneath the fill. These soils were predominantly clays having varying amounts of sand and gravel size pieces. The clay's consistency ranged from very stiff to hard.

Shale bedrock was encountered in all of the borings at depths which ranged from approximately 7-1/2 to 12-1/2 feet. Rock hardness ranged from very soft to soft.

Groundwater was not encountered in the borings at the time of our exploration. Groundwater levels, however can be measured using the existing monitoring wells at the site.

Subsurface conditions at other times and locations on the site may differ from those found at our test locations. If different conditions are encountered during construction, it is necessary that you contact us so that our recommendations can be reviewed.

### 7. Engineering Interpretation and Recommendations

We have interpreted the subsurface and laboratory data relative to the proposed construction. Several foundation alternatives were reviewed with Mr. Price prior to completing this report. The recommendation presented, in our opinion, represents the best approach based upon the geotechnical and environmental concerns of the project.

### A. Foundations

As we discussed, there is fill placed over the proposed tank concrete slab area. This fill is quite variable in consistency and composition and is not suitable for foundation support. The slab should either be supported structurally, or may be constructed on new engineered fill. The engineered fill solution has been ruled out due to the amount of soil which would have to be removed and disposed of.

Several foundation systems for supporting the 35 by 90 ft slab were considered. Due to environmental considerations, a shallow strip footing system was considered most practical for supporting the slab. Strip footings should bear on very stiff to hard brown lean clay below any fill. The borings indicate that the bearing soil may be encountered at depths of 1-1/2 to 6 feet below existing site grades. Footing depths should be no shallower than 3.5 feet below grade for protection against frost related heave. Footings may be proportioned for a maximum net allowable bearing pressure of 4.000 psf. The concrete slab should be designed as an unsupported slab with all loads being transferred to the footings. The footing trenches should be cleaned of all loose cuttings and free of water prior to placing concrete. The top of the slab could be set at an elevation which would allow the spoil from the footing excavations to be used as compacted fill beneath the slab.

### B. Construction Observation and Testing

A soils technician working under the direct supervision of the project geotechnical engineer should be present during foundation construction, to verify compliance with the recommendations contained in this report.

The technician's duties would include, but not be limited to:

- a. Identifying proper quality bearing materials.
- b. Observing the foundation bearing surface and bearing depth, and verifying that excess water, mud, and loose soil has been removed.
- c. Checking the placement of reinforcement.
- d. Sampling and testing concrete for compliance with the project specifications.

### C. Remarks

The recommendations and observations contained in this report are professional estimates based upon data which are assumed to be representative of the site studied. Variations in subsurface conditions may occur below or between the locations tested. This report was developed in accordance with currently accepted engineering practices at this time and location.

### 8. Signatures

John E. Dingeldein, P.E.

Project Engineer

Alan J. Esser, P.E. Reviewing Engineer

v.hle	6-51B.	Volume	of	Cylinders,	10	to	98	Fł.	Diameter	. *

: Dia	in.	Gal./ft.	Dia ft.	in.	Gal./ft.	Diam.,	Gal./ft.	Diam., ft.	Gal./ft.
10 10 10 10 10	0 3 6 9	588 617 648 679 711	17 18 18 19 19	6 0 6 0 6	1,799 1,904 2,011 2,121 2,234	30 31 32 33 34	5,288 5,650 6,020 6,400 6,790	55 56 57 58 59	17,770 18,420 19,090 19,760 20,450
11 11 -11 12 12	3 6 9 0 3	744 777 811 846 882	20 20 21 21 21 22	0 6 0 6	2,350 2,469 2,591 2,716 2,844	35 36 37 38 39	7,200 7,610 8,040 8,480 8,940	60 62 64 66 68	21,150 22,580 24,060 25,590 27,170
12 12 13 13	6 9 0 3 6	918 955 993 1,031 1,071	22 23 23 24 24 24	6 0 6 0 6	2,974 3,108 3,244 3,384 3,526	40 41 42 43 44	9,400 9,880 10,360 10,860 11,370	70 72 74 76 78	28,790 30,460 32,170 33,930 35,740
13 14 14 14 14 14	9 0 3 6 9	1,111 1,152 1,193 1,235 1,278	25 25 26 26 27	0 6 0 6	3,672 3,820 3,972 4,126 4,283	45 46 47 48 49	11,900 12,430 12,980 13,540 14,110	80 82 84 86 88	37,600 39,500 41,450 43,450 45,500
15 15 16 16 17	06060	1,322 1,411 1,504 1,599 1,698	27 28 28 29 29	6 6 0 6	4,443 4,606 4,772 4,941 5,113	50 51 52 53 54	14,690 15,280 15,890 16,500 17,130	90 92 94 96 98	47,590 49,730 51,910 54,140 56,420

Gal./ft. =  $5.875D^2$ , where D = diameter, ft.

numerically to  $\alpha/57.30$ . Table 6-52 gives liquid volume, for a partially filled horizontal cylinder, as a fraction of the total volume, for the dimensionless ratio H/D or H/2R.

The volumes of heads must be calculated separately and added to the volume of the cylindrical portion of the tank. The four types of heads most frequently used are the standard dished head, torispherical or A.S.M.E. head, ellipsoidal head, and hemispherical head. Dimensions and volumes for all four of these types are given in "Lukens Spun Heads," Lukens Steel Co., Coatesville, Pa. Approximate volumes can also be calculated by the formulas in Table

 $^{\circ}$  The standard dished head does not comply with the A.S.M.E. Pressure Vessel Code.

Table 6-52. Volume of Partially Filled Horizontal Cylinders

١.								
	H/D		H/D		H/D		H/D	
	0.01	0.00169	0.26	0.20660	0.51	0.51273	0.76	0.81545
	.02	.00477	.27	.21784	.52	.52546	.77	.82625
	.03	.00874	.28	.22921	.53	.53818	.78	.83688
	.04	.01342	.29	.24070	.54	.55088	.79	.84734
	.05	.01869	.30	.25231	.55	.56356	.80	.85762
	.06	.02450	.31	.26348	.56	.57621	.81	.86771
	.07	.03077	.32	.27587	.57	.58884	.82	.87760
	.08	.03748	.33	.28779	.58	.60142	.83	.88727
	.09	.04458	.34	.29981	.59	.61397	.84	.89673
	.10	.05204	.35	.31192	.60	.62647	.85	.90594
	.11	.05985	.36	.32410	.61	.63892	.86	.91491
	.12	.06797	.37	.33636	.62	.65131	.87	,92361
	.13	.07639	.38	.34869	.63	.66364	.88	.93203
	.14	.08509	.39	.36108	.64	.67590	.89	.94015
	.15	.09406	.40	.37353	.65	.68808	.90	.94796
	.16	.10327	.41	.38603	.66	70019	.91	.95542
	.17	.11273	.42	.39858	.67	.71221	.92	.96252
	.18	.12240	.43	.41116	.68	.72413	.93	.96923
	.19	.13229	.44	.42379	.69	.73652	.94	.97550
	.20	.14238	.45	.43644	.70	.74769	.95	.98131
	- 21	.15266	.46	. <del>11</del> 912	.71	.75930	.96	.98658
	.22	.16312	.4.7	.46182	.72	.77079	.97	.99126
	.23	.17375	.48	.47454	.73	.78216	.98	.99523
	.24	.18455	.49	.48727	.74	.79340	.99	.99831
	.25	.19550	.50	.50000	.75	.80450	1.00	1.00000

6-53. Consistent units must be used in these formulas. It should be remembered that volumes are given for one head but that usually two heads are involved.

A partially filled horizontal tank requires the determination of the partial volume of the heads. The Lukens catalog gives approximate volumes for partially filled (axis horizontal) standard, A.S.M.E., and ellipsoidal heads. A formula for partially filled heads, by Doolittle [Ind. Eng. Chem. 21, 322–323 (1928)], is

$$V = 0.00093H^2(3R - H) \tag{6-46}$$

where V = volume, gal.; R = radius, in.; and H = depth of liquid, in. Doolittle made some simplifying assumptions which affect the volume given by the equation, but the equation is satisfactory for determining the volume as a fraction of the entire head. This

Table 6-53. Volumes of Heads

(Use consistent units)



Type of head	Knuckle radius r _k	ħ	L	Volume	% Error	Remarks
Standard dished Torispherical or A.S.M.E. Torispherical or A.S.M.E. Ellipsoidal Ellipsoidal Hemispherical Conical	Approx. 3t 0,06L 3t	D _i /4 D _i /2	Approx.  D _i D _i D _{i/2}	Approx. $0.050D_i^3 + 1.65tD_i^2$ $0.0809D_i^3$ Approx. $0.513hD_i^2$ $\pi D_i^2 h/6$ $\pi D_i^3/24$ $\pi D_i^3/12$ $\pi h(D_i^2 + D_i d + d^2)/12$	±10 ±0.1 ±5 0 0 0 0	h varies with t  t ₂ must be the larger of 0.06L and 3t  Standard proportions  Truncated cone h = height d = diameter at small end

Table 6-56. Vessel Design Formulas for Internal Pressure

Description	Form	ulas	Notes		
Cylindrical shell	$t = \frac{PR}{SE - 0.6P}$	$P = \frac{SEt}{R + 0.6t}$	Circumferential stress (longitudinal joints) when t does no exceed 0.5R or P does not exceed 0.3855E.		
Spherical shell	$t = \frac{PR}{2SE - 0.2P}$	$P = \frac{2SEt}{R + 0.2t}$	When t does not exceed 0.356R or P does not exceed 0.665SE		
Hemispherical head	$t = \frac{PL}{2SE - 0.2P}$	$P = \frac{2SEt}{L + 0.2t}$	When t does not exceed 0.356L or P does not exceed 0.6655E. L = inside radius.		
Ellipsoidal head (semiellipsoidal)	$t = \frac{PD}{2SE - 0.2P}$	$P = \frac{2SEt}{D + 0.2t}$	For semiellipsoidal heads in which $h = D/4$ .		
	$t = \frac{PDK}{2SE - 0.2P}$	$P = \frac{SEt}{DK + 0.2t}$	For values of $D/h$ from 2 to 6. $K = \frac{1}{6} \times [2 + (D/2h)^2]$		
Torispherical (spherically dished) head	$t = \frac{0.885PL}{SE - 0.1P}$	$P = \frac{SEt}{0.885L + 0.1t}$	For standard A.S.M.E. heads in which min. knuckle radius = $6\%$ of inside crown radius but is not less than 3t. L mus not exceed $D+2t$ .		
	$t = \frac{PLM}{2SE - 0.2P}$	$P = \frac{2SEt}{LM + 0.2t}$	For values of $L/r$ from 1 to $16^2/_3$ . $M = \frac{1}{4}(3 + \sqrt{L/r})$ r must be at least 3t and $0.06 \times (D + 2t)$ . L must not exceed $D + 2t$ .		
Conical head without transition knuckle	$t = \frac{PD}{2\cos\alpha(SE - 0.6P)}$	$P = \frac{2SEt\cos\alpha}{D + 1.2t\cos\alpha}$	A reinforcing ring may be required. See Code paragraphs UA5 (b) and (c). Applicable for $\alpha \leq 30^{\circ}$ .		
- D		•			

#### Nomenclature:

f = shell or head thickness, in.

P = pressure, Ib./sq. in.

S = allowable stress, lb./sq. in.
E = joint efficiency, dimensionless

R = joint emotioncy, dimensionless R = inside radius, in.

D = inside diameter of head skirt, or inside length of major axis of an ellipsoidal head, in. h = inside depth of an ellipsoidal head, in.

r= inside knuckle radius of a torispherical head, in. L= inside radius of hemispherical head or inside crown radius of a torispherical head, in.

(Appendix). There are also rules for openings in flat heads and for closely spaced openings.

Reinforcement may be added by welding rings of plate or bar around the opening. Sometimes a heavy ring may be inserted in an opening in the shell, as shown in Fig. 6-135a. Although this is accepted by the Code, it is not favored. Another type which is used, particularly in high-pressure vessels, is a forged nozzle inserted as shown in Fig. 6-135b. This is an excellent design and the weld can be radiographed.

The Code does not limit the size or shape of openings. It does, however, have special rules and recommendations for openings of

certain shapes and sizes.

Flange design procedures are specified by the Code for joints that are circular in shape and have the gasket located inside the bolt circle. In such flanges there is a moment arm between the circle on which the bolt force W is applied and the circles on which the opposing gasket force  $H_{\mathcal{G}}$  and hydraulic thrust  $H_{\mathcal{D}}$  are applied. This principle is illustrated in a simplified way in Fig. 6-136a. Actual flange calculations may involve additional forces.

Applying the forces  $H_G$  and  $H_D$  with their corresponding moment arms  $h_G$  and  $h_D$  produces bending moments which try to turn the flange inside out. If the flange does not have sufficient strength and rigidity to resist these moments, its cross section will rotate enough to open a gap at the gasket and permit leakage. This is illustrated in an exaggerated view in Fig. 6-136b. Appendix II of the Code contains detailed procedures, gasket data, and curves for calculating flange loads, moments, and stresses.

The Code classifies flanges in two basic types—integral and loose. The integral-type flange is constructed in such a way that it obtains some strength from its hub and from the nozzle or vessel wall to which it is attached. Loose-type flanges are attached in such a

manner that they cannot safely be assumed to obtain strength in this way. They must resist all of the moment internally. Section VIII, Division 1, has a third category, called optional-type flanges. Examples of all three types of flanges are shown in Fig. 6-137. (See Code Par. UA-48.)

Code flange design, as specified in Appendix II, involves the calculation of two types of loads, minimum required bolt load for gasket seating, and minimum required bolt load for the operating conditions. When a joint is initially put together, it is necessary to apply sufficient force on the gasket to make it conform to the surface of the flange. Code Table UA-49.1 gives suggested values of minimum design seating stress which is necessary to "yield" each particular type of gasket and make it conform to the flange surface. These stress values vary from 0 for rubber to 26,000 lb./sq. in. for stainless steel. The minimum required bolt load for gasket seating is determined by applying this stress to a prescribed fraction of the gasket area (calculated by formula). The flange and bolting are designed to carry this load (as well as the resulting moment), using the stresses allowed in the materials at atmospheric temperature. The entire gasket area is not used in calculating seating load, because the deflection of the flange causes it to bear most heavily at the outer edge of the gasket.

When a joint must withstand internal pressure, the Code assumes that leakage will not occur if the flange bears against the gasket with a pressure that is a certain multiple of the internal pressure in the vessel. This multiple is known as the gasket factor. Code Table UA-49.1 gives suggested values which vary from 0.5 for soft rubber to 2.0 for ½-in.-thick compressed asbestos and to 6.5 for stainless steel. If internal pressure is 100 lb./sq. in. and gasket factor is 2.0, then the flange must exert a pressure of 200 lb./sq. in. against the gasket. Applying this pressure to a specified portion of the

### TABLE 29 Formulas for membrane stresses and deformations in thin-walled pressure vessels

NOTATION: P= axial load (pounds); p= unit load (pounds per linear inch); q and w= unit pressures (pounds per square inch);  $\delta=$  density (pounds per cubic inch);  $\sigma_1=$  meridional stress (pounds per square inch);  $\sigma_2=$  circumferential, or hoop, stress (pounds per square inch);  $R_1=$  radius of curvature of a meridian, a principal radius of curvature of the shell surface (inches);  $R_2=$  length of the normal between the point on the shell and the axis of rotation, the second principal radius of curvature (inches); R= radius of curvature of a circumference (inches);  $\Delta R=$  radial displacement of a circumference (inches);  $\Delta y=$  change in the height dimension y (inches);  $\psi=$  rotation of a meridian, positive when  $\Delta R$  increases with y (radians); E= modulus of elasticity (pounds per square inch); and  $\nu=$  Poisson's ratio

Case no., form of vessel	Manner of loading		Formulas		
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				
		aR			···
one a	2a. Uniform internal or external pressure, q lb/in²; tangential edge support	$\sigma_1 = \frac{qR}{2t\cos\alpha}$ $\sigma_2 = \frac{qR}{t\cos\alpha}$ $\Delta R = \frac{qR^2}{Et\cos\alpha} \left(1 - \frac{\nu}{2}\right)$		:	
R F F1		Et $\cos \alpha$ (2) $\Delta y = \frac{qR^2}{4Et \sin \alpha} (1 - 2\nu - 3 \tan^2 \alpha)$ $\psi = \frac{3qR \tan \alpha}{2Et \cos \alpha}$		·	

### ATTACHMENT C

### CONTAINMENT COATING INFORMATION

INSTRUCTION MANUAL
PRINCO MODEL L3502
NULL-KOTE
PROB-A-LARM



1020 INDUSTRIAL HWY. SOUTHAMPTON, PA. 18966

## MODEL 13502 CONTROL WITH PROBE



ILLUSTRATION OF EQUIPMENT

## SECTION 1 DESCRIPTION

Princo's Model L3502 Point Level Control is truly universal in its ability to work with practically all process control type liquids and materials. Its unique circuit design forms the basis for Princo's Null-KoteTM system, which ignores build-up, even conductive coating on the sensing probe.

Operating on RF (Radio Frequency) Impedance sensing principle, the L3502 will detect the presence (high level) or absence (low level) of virtually any material or liquid in any type of storage bin or tank. Likewise, it may be made Fail-Safe in either high or low mode. Because of its excellent stability and wide range sensitivity, the L3502 will operate in conjunction with process materials which range from low dielectric products such as refined oils to conductive slurries.

The Model L852 sensing probe is the standard probe (others optional) employed by the L3502. Its sensing and guard elements are constructed of 316 stainless steel. Insulating sections are made of molded epoxy resin. This probe is suited to a wide range of applications, including many having corrosive process materials.

# SECTION 2 SPECIFICATIONS

#### TYPE

Point type (on/off), high frequency (RF), impedance sensing, all solid state level controller.

#### SENSITIVITY

Senses capacitance as low as 0.15pF and material with dielectric constant as low as 1.5. Sensitivity may be decreased to approximately 1000pF.

### AMBIENT TEMPERATURE RANGE

-40 to 150°F (-40 to 66°C)

#### TEMPERATURE STABILITY

Temperature coefficient is 0.0025pF/°F (0.0045pF/°C).

#### RELAY CONTACTS

Two sets of form C contacts, rated as 10 amperes, 115V AC or 26V DC, resistive load.

## DELAY TIME AND DELAY MODE OPTIONS

Standard delay is 0 to 30 seconds, standard mode is delayed turn-on and delayed turn-off. Optional delays are 0 to 10 or 0 to 60 seconds. Optional modes are delayed turn-on with instant off, or delayed turn-off with instant on.

### POWER REQUIREMENTS

95 to 125V AC, 50 to 60 Hz, 5 watts, or 24Vdc + 10%, or 12Vdc + 10%, 5 watts. (Select applicable power source).

#### ELECTRONIC HOUSING

Heavy duty cast aluminum. Explosion proof Class 1, groups C & D, Class II, Groups E, F & G. Weatherproof, FM Approved.

## ATTACHMENT D

## HIGH LEVEL INSTRUMENT SPECS.

## SILOXIRANE C2033

## PROTECTIVE LINING FOR SULPHURIC ACID SERVICE AND CORROSIVE ENVIRONMENTS REQUIRING AMBIENT CURE

#### DESCRIPTION

Siloxirane® C2033 is a two component polymer system. It is an organic-inorganic thermoset polymer having an oxygen-to-carbon linkage with a very dense, highly cross-linked molecular structure. The absence of problematic hydroxyl and ester groups makes Siloxirane impervious to a wide range of corrosive and erosive materials. Excellent for sulphunc acid service from 1% to 98%.

#### **APPLICATIONS**

Siloxirane® may be used on steel substrate that has been properly prepared, on alloys, glass, concrete, wood, plastics, etc.; it can be applied by spraying. trowelling or brushing. Although normally cured at 180-200°F. Siloxirane® C2033 can be cured at ambient temperatures (60°F and above). This makes it especially suitable for use on structural steel, concrete dikes, concrete acid and waste water pits, etc., where curing at elevated temperatures is difficult or impractical. It is capable of handling acids, alkalies and solvents.

#### SUMMARY OF BENEFITS

- Broad range of chemical resistance
- Steam cleanable
- Unique temperature span: -80°F to +200°F
- Non-absorbent
- Coeff. of expansion similar to that of stainless steel
- Maintains a tough, hard surface
- Easily patched by maintenance personnel
- Outstanding abrasion wear resistance
- Excellent adhesion, even with flexing
- Complies with FDA 21 CFR 177.2420

#### TYPICAL PROPERTIES

Finish

**Oyster White** 

Weight per Gallon

11.0 lbs.

V.O.C. Level

0.85 lbs. per gallon

Lead Content

Zero

Kil Size

3 Gallons C2001 Resin 35.2 Ounces C2033 Catalyst

Activator

C2033 Catalyst

Pot Life

1.5 hours at 80°F and

50% rel. hum.

Viscosity

Reduce with MEK to 12-13

seconds with a Zahn #5

Flash Point

53°F

Solids by Volume

86.9%

Solids by Weight

92.8%

Chromate Content

Zero

 Theoretical Coverage

1360 sq. ft. per gal. at 1 mil DFT

Recommended DFT

10-13 mils dry

12-14 mile wet

(1 or 2 coat applic. - see directions)

Shell Life

One year minimum when

stored at 50-90°F



Avon. OH 44011

Phone 800-334-7193

Telex 985504

Fax 216-937-5046

Tensile Strength 40°F 12,900 p.s.i Lap Shear Strength -67°F 2,280 p.s.	
(ASTM D638) 75°F 11,340 p.s.i. (Adhesion) 75°F 2,720 p.s. (ASTM 1002) 350°F 1,994 p.s.	
539F 1.180 p.s.	
Commend Marketine 0.816 k.s.i.	
(ASTM D790) - Heat Deflection Temp. 264 p.s.i. 300° (ASTM D648)	F
• Water Absorbtion (30 days in	. i.
(ASTM D570) 88°C Water) 0.25% Tensile Modulus -40°F 0.69 m.s (ASTM D63F) 75°F 0.89 m.s	
• Permeability - Vapor 0.0000 gm • Elongation -40°F 5.09	
Transmission of Water per sq. ft. per 7 days /3-P 4.30	776
at 90°C for 7 Days per inch thickness Hardness 75-78 Barr	
Thermal Properties:     Coeff of Thermal Expansion 19 • Impact Resistance 37 in/	bs
Coeff. of Thermal Expansion 19 Impact Residence -50°C to 150°C (in/in/°C x 10°4 (ASTM D2794)	
(ASTM DEGR)	
Coeff. of Thermal Conductivity 80x104 . U.V. Light Resistance 404 years	<b>5</b>
(ASTM D2214) (cal/sec. cm². °C.cm) (ASTM G53)	

#### PRINCIPAL USES

- Water white sulfuric acid service. SILOXIRANE® C2033 offers protection to a wide range of equipment such as tanks, reactors, pumps, scrubbers, pipes, ducts, waste water pits, etc., in the following industries:

Chemical and Petrochemical Processing
Petroleum Refining
Mining and Smelting
Paper and Pulp
Hazardous Waste Disposal and Management
Transportation
Power Generation
Steel

#### **CHEMICAL RESISTANCE:**

Sulphuric acid to 98% at 200°F, most solvents including methanol, gasohol, distilled water, inorganic acids, dilute organic acids and alkalies. Ideal for corrosive vapor environments.



April 1, 1981





#### **GENERAL**

SEALTIGHT CM-60 TM TWO-PART POLYSULFIDE SEALANT is a guergrade, two-component, non-sag joint sealant, composed of a Thiokal* polysulfide liquid polymer base. It is excellent for sealing joints between tilt-up and pre-cast panels, for sealing penmeter joints of window units and joints between curtain wall panels as well as glazing of metal and glass panels, flashings, coping joints, etc. Suitable for all vertical wall joints requiring a high performance sealant. Also ideal for the seating, cautiung and glazing of all kinds of pre-cast assemblies, expansion joints, window channels, doors, sills and ventilators as well as foundations, retaining walls, swimming pools, reservoirs. tunnels, locks, etc.

It cures within 24 hours to a permanent, flexible, rubber-like consistency with outstanding stretch. After complete cure, CM-60 will withstand ± 12.5% joint movement. In addition, CM-60 withstands extremes of repeated joint expansion/contraction over a practical service temperature range of -20° to +180°F, and has high resistance to the ravages of weather, moisture, ozone and chemicals, it maintains an effective bond between practically all building materials, with similar and dissimilar substrates, surface textures and ex-

*Registered trademark of the Thinks Communication

pansion rates, including metals, massonry, glass and wood.

#### **ADVANTAGES**

- Excellent for all joints having movement due to temperature changes.
- Cures to a flexible, rubbery, nonsagging, non-staining seal which will not harden, crack, or lose adhesion upon aging.
- Maintains an effective bond between practically all building materials, with similar or dissimilar substrates, surface textures and expansion rates.
- Withstands extremes of repeated joint expansion/contraction over a wide temperature range.
- Has high resistance to ravages of weather, moisture, ozone and chemicals.

#### **APPLICATION**

Joint Dirnensions: CM-60 Sealant is designed for use in joints having a minimum width of 1/4". Performance of the sealant is dependent upon joint design; joint width should be a minimum of four times the anticipated joint movement between temperature extremes.

Sealant Depth: For optimum sealant performance, the joint sealant shape should be controlled to provide 1/4" depth minimum for joint widths up to

1/2"; for joints between 1/2" and 1", the sealant depth should be 1/2 the joint width; for joints over 1" wide, sealant depth may be maintained at 1/2". Control sealant depth by inserting SEALTIGHT Backer Rod, which also acts as a bond breaker preventing three point adhesion, i.e., adhesion at the bottom of the joint.

Joint Preparation: Joint surfaces must be clean, dry and free of all contaminants, such as curing compounds, form release agents, protective coatings and oil, grease or bitumens, all of which will interfere with the adhesion of the sealant.

For New Concrete: Remove all loose material by wire brushing. Surfaces exposed to form release agents and curing compounds should be cleaned by sandblasting or equivalent abrading. Laitance removed by abrading. Fresh concrete must be fully cured.

For Old Concrete: All old joint sealing materials must be removed by mechanical means. Joint faces containing absorbed oils or bitumens must be cut back to clean, sound concrete.

Metal Surfaces: All protective coatings must be removed by cleaning and wiping with Methyl Ethyl Ketone or Xylol; final wipe with clean cloth and fresh solvent.

Glass Surfaces: Remove oil and dirt films by solvent wiping, using clean cloth and fresh solvent.

W. R. MEADOWS, INC.

2110 E. Aurora Road Twinsburg, Ohio 44087-1969

TELE (330) 425-9171 FAX (330) 487-0769

Bob Taft, Governor Christopher Jones, Director

August 21, 2000

Mr. Mike Mraz Hukill Chemical Corporation 7013 Krick Road Bedford, OH 44146-4493 AUG 2 5 2000

MNOHWI PERMIT SECTION - WMB

U.S. EPA - REGION 5

Re: Hazardous Waste Permit Modification, Class 1A Notice of Deficiency Hukill Chemical Corporation, U.S. EPA ID: OHD 001926740
Ohio EPA ID: 02-18-0315, Installation of the Auger, Cuyahoga County

Dear Mr. Mraz:

On July 26, 2000, Ohio EPA received a request for a Class 1A permit modification (PITS # 000801-1A-1) from Hukill Chemical Corporation (Hukill).

The Ohio EPA, Division of Hazardous Waste Management (DHWM) has conducted a completeness/technical adequacy review of the above referenced modification application, and has determined it to be incomplete and technically inadequate. This application has been reviewed pursuant to the rules published in the Hazardous Waste Facility Standards Chapters in the Ohio Administrative Code ("OAC") and the corresponding Federal regulations.

We have enclosed completeness/technical adequacy comments that are the result of this review as Attachment 1. Please provide detailed information addressing all areas indicated on the comment sheets to Ohio EPA within 15 days of the date of receipt of this correspondence. This submission shall be in accordance with the following editorial protocol or convention:

#### EDITORIAL PROTOCOL

- 1. Old language is overstruck. Delete language overstruck in previous versions as necessary to maintain only current language and its immediate antecedent overstruck language.
- 2. New language is capitalized.
- 3. Page headers should indicate date of submission or version designation.
- 4. If significant changes are necessary, pages should be renumbered, table of contents revised, and complete sections provided as required.

#### HUKILL CHEMICAL CORPORATION AUGUST 21, 2000 PAGE - 2 -

- Each original application, or amended version must be prefaced by an updated "List of Effective Pages." The purpose of this requirement is to create a standard mechanism to specify and verify the content of the Part B permit application. Each "List of Effective Pages" must contain, at minimum, an inventory of pages for the entire document, posting directions, and a chronology of versions. The inventory of pages must positively identify each effective attachment by its page, drawing, figure, or table designation, and, unless an original page, by its current version designation or date of submission as specified in the inventory of pages. Attached are two examples of "List of Effective Pages" and associated page markings. RCRA Engineering Section, Division of Hazardous Waste Management, Central Office, Ohio EPA may authorize individual facilities to use an alternate method of specifying the content of their Part B permit application on a case-by-case basis.
- 6. Each original application, or version must be accompanied by a certification letter as specified in OAC Rule 3745-50-42(D).

Please send one copy each to:

Tom Crepeau, Manager Ohio EPA, DHWM Data Management Section 122 S. Front Street P.O. Box 1049 Columbus, Ohio 43216-1049 Harriet Croke, Chief Ohio Permitting Section (HRP-8J) Waste Management Division U.S. EPA, Region 5 77 West Jackson Boulevard Chicago, Illinois 60604

Please send two copies to:

Joe Loucek, Environmental Specialist Ohio EPA, Northeast District Office 2110 East Aurora Road Twinsburg, Ohio 44087

In the course of the technical adequacy review, we may request additional information if it is necessary to clarify, modify, or supplement previous submissions of information in order to substantively evaluate the permit application for adequacy.

Failure to submit a complete permit application or to correct deficiencies in the application may result in the following:

1) Revocation of your existing Ohio Hazardous Waste Facility Installation and Operation

Permit; HUKILL CHEMICAL CORPORATION AUGUST 21, 2000 PAGE - 3 -

- 2) Denial of the permit application; and
- 3) Referral of the matter to the Ohio Attorney General's Office for appropriate enforcement action.

If necessary, Hukill may contact Joe Loucek of the Northeast District Office at (330) 963-1258 within ten (10) days of receipt of this NOD to discuss each of the enclosed comments in order to make clear the information being requested. This can be accomplished by a conference call or meeting.

Thereafter, any questions concerning the review of this permit application and the level of detail expected should also be addressed to Joe Loucek.

Sincerely,

Joseph C. Loucek, III

Environmental Specialist

Division of Hazardous Waste Management

JCL:ddw

cc:

Harriet Croke, Region V, USEPA
Jeremy Carroll, EU, DHWM, CO
Tom Crepeau, DMS, DHWM, CO
Pam Allen, CAS, DHWM, CO
Joe Loucek, DHWM, NEDO
Frank Popotnik, DHWM, NEDO
Mike Joseph, DHWM, CO

## ATTACHMENT 1 - Comments on the Class 1A Modification Request for Hukill Chemical Corporation to Install an Auger System

#### **General Comments:**

Red text is not acceptable. The red text is useful for a working copy and from an editorial standpoint is appreciated. However, the red text does not carry through onto additional copies Ohio EPA may need to make of the updated pages. The set protocol is as follows:

The Revised Class 1A modification shall be prepared in accordance with the following editorial protocol or convention:

- a. Old language is overstruck. Delete language overstruck in previous versions as necessary to maintain only current language and its immediate antecedent overstruck language.
- b. New language is capitalized.
- c. Page headers should indicate date of submission or version designation.
- d. If significant changes are necessary, pages should be renumbered, table of contents revised, and complete sections provided as required.
- e. Each original application, or amended version must be prefaced by an updated "List of Effective Pages." The purpose of this requirement is to create a standard mechanism to specify and verify the content of the Part B permit application. Each "List of Effective Pages" must contain, at minimum, an inventory of pages for the entire document, posting directions, and a chronology of versions. The inventory of pages must positively identify each effective attachment by its page, drawing, figure, or table designation, and, unless an original page, by its current version designation or date of submission as specified in the inventory of pages. Attached are two examples of "List of Effective Pages" and associated page markings. RCRA Engineering Section, Division of Hazardous Waste Management, Central Office, Ohio EPA may authorize individual facilities to use an alternate method of specifying the content of their Part B permit application on a case-by-case basis.
- The pages should be revised to remove previously approved comments. It is confusing and inappropriate to not submit a clean copy showing only current proposed changes.
- 3 Only submit those pages that are directly affected by this current permit modification.
- 4 Hukill should resubmit the auger class modification determination request information as part of this class 1A modification request.

Attachment 1 Comments on Auger Installation Modification Request Page 2 of 11 August 21, 2000

## Section D Permit Modifications:

5	Page 11	The section entitled, <u>Tanks Storing Hazardous Waste</u> , sixth paragraph, second line reads "considered a permitted hazardous waste storage tank." Until the ORC section 3734.0(2)(G) exemption is approved, the auger system will treat exempt waste (waste sent to BIFs) only. It is premature and inappropriate to consider this section a "permitted hazardous waste storage tank".
6	Page 22	The section entitled, <u>Auger System Tank (750 gallon)</u> , refers Figure 1 in Exhibit D-12. It is acceptable to submit a reduced size drawing, as found in the submitted permit modification request. However, if you do this, the reduced-size drawing must be modified from the original in that all text is readable. Please revise Figure 1, making all text readable. Drawing details specific to the auger should also be clearly visible on the drawing.
7	Page 22	The section entitled, <u>Design</u> , paragraph 1, first sentence reads "haz.waste fuel blends." Again, use exempt language when referring to treating hazardous waste within the auger. This language would be appropriate in the ORC section 3734.0(2)(G) exemption request, but not here.
8	Page 22	The section entitled, <u>Design</u> , paragraph 2 describes the normal flow of materials through the fuel blending operation. A figure should be included that matches exactly the descriptions used in the body of this section text of the layout and operation of the auger system. This may be the purpose of Figure 1, but in its current font size, this is indeterminable.
9	Page 23	Third paragraph, last line reads "removed for reconditioning or disposal." Additional information should be included as to any cleaning procedure which may be followed. If it is anticipated that after the auger, the drums will be RCRA empty, such a comment should be provided. Since the auger is original equipment manufactured (OEM) equipment, a contingency should be included in the event the drums are not RCRA empty after the auger.
10	Page 23	The section entitled, <u>Management</u> , second line reads "will be cleaned periodically." Periodically must be defined (e.g., weekly, monthly) and why this interval is chosen. Please note, "as needed" is not an appropriate way to define periodically, nor is it a suitable substitute.

Attachment 1 Comments on Auger Installation Modification Request Page 3 of 11 August 21, 2000		
11	Page 23	The section entitled, <u>Inspections</u> , second sentence reads " <i>The containment is the same"</i> Some reference should be made to where the steel floor is already described within the permit.
12	Page 23	The section entitled, <u>Inspections</u> , second sentence also reads "will be inspected (along with the tank)" Therefore, the inspection log needs to be updated and included as a page change with this modification request.
13	Page 24	The section entitled, <u>Requirements for Ignitable or Reactive Wastes</u> , first paragraph again refers to "hazardous waste" stored in the auger system tank. The language should be revised to state it will only manage exempt waste (waste sent to BIFs).
14	Page 24	Space is needed between first and second paragraph. A period is needed at the end of the second sentence.
15	Page 24	The section entitled, <u>Requirements for Ignitable or Reactive Wastes</u> , second paragraph, first line reads "is a restricted area." This is already described in detail within the permit. The appropriate sections of the approved permit should be referenced here.
<u>Secti</u>	on F Permit M	Iodifications:
16	Page 10	Comparing page 10 of the permit (section F-4a(2) - Unload To Recovery) to the proposed changes, the pages do not "match". Page 10 of this submittal should start with "Container Building. As detailed in Section D" as it does on the existing page 10 (from the permit).
17	Page 10	Second full paragraph, line four discusses use of a drip pan under the conveyor. Please provide detail on the drip pan, including, but not limited to material of construction, size, etc. The extent to which the drip pan provides overspill collection should also be shown on the figures.
18	Page 13	First full paragraph, third line reads "handling equipment will be reviewed" The fourth line reads "Heat sensors will be integrated" A time line for these activities and final report documenting the final installation should be submitted to Object FRA. The paragraph of well be

installation should be submitted to Ohio EPA. The paragraph should be

revised to reflect this addition.

Attachment 1 Comments on Auger Installation Modification Request Page 4 of 11 August 21, 2000

## Part B Permit Modifications:

19	Page 27	"insert Exhibit A" should all be capitalized.
20	Exhibit A	The entire paragraph should all be capitalized.
21	Exhibit A	Fourth line reads "tank contents is pumped" Detail as to specifically where the contents are pumped, and how they get there should be included here.

<b>2</b> I	Exilloit A	where the contents are pumped, and how they get there should be included here.		
Exhil	Exhibit D-12 Comments:			
22	Introduction	Second paragraph, first line reads "plans to installed" "installed" is a typo and should be corrected.		
23	Introduction	In the second paragraph, the auger system is referred to as "Auger System". In the third paragraph it is referred to as the "Auger/Pulper System". Since neither term is defined, either define both, pointing out the differences, or settle on one term.		
24	Introduction	Third paragraph, first line reads "within the containment area" That should be revised to make it clear the containment already exists.		
25	Introduction	Third paragraph, third line refers to Figure 1 on the following page. Please see comment number 6 above.		
26	Introduction	In the fourth paragraph, Hukili should make it clear that the steel containment is existing.		
27	Page 7	Auger System Tank, section 1, first paragraph, first line reads "will be equipped" Details as to when the fire suppression system will be installed should be included. Detail should be included as to whether or not this system needs to be installed/certified by a professional, and the supporting rationale for that decision.		
28	Page 7	Auger System Tank, section 1, first paragraph ends with "fire water storage tank". The second paragraph begins with "Tank filling". Obvious from the text of the second paragraph the discussions are of two different tanks. This needs to be made clearer.		

Attachment 1 Comments on Auger Installation Modification Request Page 5 of 11 August 21, 2000

•	•	*
29	Page 7	Auger System Tank, section 1, second paragraph fourth line reads "and taking appropriate action." Appropriate action should be defined.
30	Page 7	Ancillary Equipment, section 2 - this section should be revised to provide detail demonstrating the purpose of the pulper, including detail as to why it is considered ancillary and not intrinsic to the design of the auger system.
31	Page 7	Secondary Containment, section 3 discusses Figure 1. Please see comment number 6 above.
32	Page 7	Secondary Containment, section 3 also discuss the existing steel liner. Verbiage should be added that makes it clear the liner is already in place. In light of the first paragraph on page 8, this is important as this will eliminate any questions regarding precedence.
33	Page 8	First paragraph reads "750 gallons" "is the minimum required containment" This seems inconsistent when compared to section 3.b which states the 750 gallons "exceeds the minimum containment." Both statements should be further clarified.
34	Page 8	Third paragraph reads "The containment is inspected daily and spills would be" Since the inspections already occur, would it not be more appropriate to state that spills are removed within 24 hours? This paragraph also mentions the daily inspection of the containment area. Please see comment number 11 above.
35	Page 8	Section 3.b, second line reads "since these tanks" This document is for describing the auger tank and system in light of the permit modification request. It is not appropriate to discuss plural tanks. This paragraph should be revised in light of comments made above regarding the first paragraph on this page. You may include reference to the other tanks within the containment area, so long as specific singular reference is made to the auger tank system, and its impact on containment capacity.
36	Page 9	Corrosion Protection Measures, first paragraph reads "HHC has maintained a protective coat" To Ohio EPA's knowledge, no maintenance has occurred on the auger tank to date justifying this statement.

Attachment 1 Comments on Auger Installation Modification Request Page 6 of 11 August 21, 2000

Augu	August 21, 2000			
37	Page 9	Corrosion Protection Measures, first paragraph, second line reads "As stated in the" there needs to be the appropriate reference to that section of the Waste Analysis Plan (WAP).		
38	Page 9	Corrosion Protection Measures, first paragraph, third line reads "hazardous waste destined for this tank system" to which tank system does this line refer, and what is the significance of this statement in light of a discussion on the auger tank system? Further, since this is in reference to the auger tank, references to it storing hazardous waste should be removed.		
39	Page 9	Corrosion Protection Measures, first paragraph, last line reads "prior to or during transfer to the storage tank." To which storage tank does this line refer, and what is the significance with regard to the auger system?		
40	Page 9	Corrosion Protection Measures, second paragraph starts with "This tank" and ends with "this system." This paragraph should be revised to maintain uniformity of descriptions throughout.		
41	Page 10	Third and Fourth paragraphs, last line in each paragraph reads "or when pinhole leaks begin appearing" Those sentences need to end with "whichever happens first."		
42	Page 10	Fifth paragraph states that a of a factor of 2 is used to increase the minimum plate thickness, as described in the second and third paragraphs (The 2 is representative of some factor of safety). How was this value determined from a feasibility, engineering, and regulatory standpoint? What is the justification for its use versus, say a value of 3.5?		
43	Page 10	Section 1.a - <u>Seismic Considerations</u> - second paragraph, what is the significance of the factor of safety for seismic forces?		
44	Page 10	Section 1.c - <u>Frost Heave</u> - in both 1.a and 1.b, a simple definition for the load is provided according to the OBBC guidelines. It is inappropriate to remove the definition from 1.a. In order to have uniformity and consistency in the document presentation, a like definition should be provided for frost heave.		

Attachment 1 Comments on Auger Installation Modification Request Page 7 of 11 August 21, 2000

45	Page 11	Section 2.a - Full Tank - Hukill should explain why the 1.33 value is used. Please provide a reference. Where are the calculations for the load on one leg? Hukill should explain why the soil bearing capacity is used. The terms were switched from "soil capacity" to "concrete slab floor". Please change verbiage such that the document maintains consistent use of terminology. If the soil bearing capacity comes from the strength of the concrete and underlying bedding, engineering drawings from the installation of the concrete should be provided, or referenced if already part of the facility's hazardous waste permit.
46	Page 11	Section 3 - <u>Secondary Containment</u> , second line reads " <i>The fact that has been described as non-critical.</i> " Where has this been done? Please cite the references where this fact has been determined to be non-critical, being sure the term " <i>non-critical</i> " is used and defined within the reference citation.
47	Page 13	Section 2 - Non-Destructive Testing - what is the precedent for Hukill testing the tank thickness annually where other tanks at the facility are tested semi-annually? This section should follow Part B Permit Condition D.5(d), and permit should be modified to include this item as D.5(e). The current D.5(e) should become D.5(f). If it decided the tank thickness test will be performed semi-annually, permit condition D.5(d) should be modified to include the auger tank.
48	Page 13	Section 4 - <u>Ancillary Equipment</u> - this section fails to list the pulper as a piece of ancillary equipment as in Section 2, page 7 of this document. Further, that same section does not list the drum auger, pipes, valve, and fittings as ancillary equipment. This discrepancy must be addressed.
49	Page 13	Section 5 - <u>Installation Certification</u> - According to the previous page ( <i>Certification Statement for Written Assessment for the Design of the Tank System</i> ), the auger system is already installed. As such, the first paragraph of this section should be dated.
50	Page 13	Section 5 - <u>Installation Certification</u> - for clarity, third paragraph should state why "the placement, backfilling and corrosion due to soil/water contact is not applicable to this installation."
51	Page 15	The Certification Statement for the Installation of the Tank System has not been signed/stamped

been signed/stamped.

Attachment 1 Comments on Auger Installation Modification Request Page 8 of 11 August 21, 2000

## Calculations:

52	Page 1	Hukill should explain from where the 1.33 (maximum use) is used for the specific gravity.
53	Page 1	In the 2" $\times$ 2" angle rim weight calculation, Hukill should why 3.19 is used.
54	Page 1	In the shell weight calculations, Hukill should explain why 10.2 and 20.4 lb/sqft is used.
55	Page 2	In the bottom plate weight calculation, Hukill should explain why 20.8 is used. Hukill should explain why 1/4" is used.
56	Page 2	In the baffle weight calculation, Hukill should explain why 6.6 is used.
57	Page 2	Why is the 4x4 used in the leg weight calculation but not the baffle weight calculation? From the Auger System Tank figure, it would seem to me the calculations would be similar as the pieces appear similar.
58	Page 2	In the legs, weight calculation, Hukill should explain why 8.2 is used. Hukill should explain why 5/16 is used.
59	Page 2	According to the figure, it appears as though the legs have plates welded to the bottom of each leg. The calculation for the weight of these plates, could not be found in the submittal.
60	Page 2	Hukill should explain why weights for the agitator support framing, shaft, arms and pulley, motor, and misc. appurtenances is used.
61	Page 2	In the weight of liquid in the upper shell calculations, Hukill should explain why 62.4 is used.
62	Page 2	Hukill should explain why volume below the upper shell value is used.
63	Page 2	In the weight of liquid below the upper shell calculations, Hukill should explain why 62.4 is used.
64	Page 3	In the tank legs calculation, Hukill should explain why 1.94 sq in is used. Hukill should explain why radius of gyration is used.

Attachment 1 Comments on Auger Installation Modification Request Page 9 of 11 August 21, 2000

Augus	August 21, 2000		
65	Page 3	In the load on one leg calculations, Hukill should explain why 800/2 is used. Where did this equation is used.	
66	Page 3	The calculations in 4. <u>Check Tank Legs</u> should follow the format the engineer used in 5A.	
67	Page 3	The calculations in 5A - <u>Calculation of Required Tank Wall Thickness - Cylindrical Shell</u> , how was an f of 12,600 psi determined? What does the [2.1] reference? There is no equation called 2.1 within this document.	
68	Page 3	The calculations in 5A - If there is going to be a nominal thickness term used, it must be defined or given a value in this document. The obvious place is under the unit description on page 1 of the calculations.	
69	Page 3	The calculations in $5A$ - Where is service factor(SF) defined? How, looking at an SF of 24.0 does one recognize/know that the cylindrical shell is " $OK$ "? Include a reference to the service factor discussion and include a $24.0 > 2.0$ (from the textual discussion of service factor) line within this calculation, to include a brief verbal discussion here.	
70	Page 4	The calculations in 5B - <u>Longitudinal Force</u> - uses the term " <i>Spring Line</i> ". The diagram marked Appendix A (same as Figure 2) is supposedly the reference diagram for the calculations. It needs to be marked with the Spring Line.	
71	Page 4	The calculations in 5B - <u>Longitudinal Force</u> - there is no "hc" in the calculation, so why is it defined with the other terms?	
72	Page 4	The calculations in $5B$ - <u>Longitudinal Force</u> - in the calculation to determine $\theta$ , where is the 15" used? It should be defined, or shown graphically with a sketch (the sketch can be in the margin on that page).	
73	Page 4	The calculations in 5B - Hoop Force - What is the significance of "2,793 $lb/ft > 1,490 \ lb/ft$ "?	
74	Page 4	The calculations in 5B - <u>Hoop Force</u> - how was an "f" of 12,600 psi determined? What does the [2.1] reference? There is no equation called 2.1 within this document.	

Attachment 1 Comments on Auger Installation Modification Request Page 10 of 11 August 21, 2000

Augu	August 21, 2000			
75	Page 5	The calculations in 5B - If there is going to be a nominal thickness term used, it must be defined or given a value in this document. The obvious place is under the unit description on page 1 of the calculations.		
76	Page 5	The calculations in 5B - Where is service factor(SF) defined? How, looking at an SF of 24.0 does one recognize/know that the cylindrical shell is " $OK$ "? Include a reference to the service factor discussion and include a 24.0 > 2.0 (from the textual discussion of service factor) line within this calculation, to include a brief verbal discussion here.		
77	Page 5	In calculating the maximum effective area of compression, the calculation states to use 1.068 as the value instead of 2.0. That decision needs to be explained. A small table below the service factor calculation on page 6 showing use of 2.0 to be more restrictive is sufficient (with reference to it on page 5).		
78	Page 5	In the Summation of Forces calculation, include references.		
79	Page 6	What is the significance of " $12,037  psi < 15,000  psi$ "?		
80	Page 7	Under 8. Foundation Investigation, what is the source of the 2'-0"? Why is 2'0" used?		
81	Page 7	Under 8. Foundation Investigation, from where does 4,000 psf load bearing capacity for the slab and soil come? Ohio EPA requires some sort of proof (drawings, etc.) of such values. If the drawing has previously been submitted and is part of the permit, it can be included by reference.		
82	Page 7	Under 8. Foundation Investigation, from where does the 3,765 lbs come? That needs to be included.		
83	Page 7	Under 9. Containment Curb, what is being called the containment curb? Figure 3 should be referenced, as it is marked on there, though not clearly readable.		
84	Page 8	Please use proper bibliographic reference format. Attachment 2 is an example of how reference lists should be formatted.		

Attachment 1 Comments on Auger Installation Modification Request Page 11 of 11 August 21, 2000

rugus	1, 2000	
85	Appendix 1	The language in the first paragraph on this page, where it reads "in the permitted container storage area." is exemplary verbiage where I ask that it is made clear that the steel secondary containment is already permitted/existing (other comments on this list).
86	Appendix 1	The third paragraph, first line reads "by 4 ½ inch deep" This should be revised to read "by 4 ½ inch (0.375 feet) deep" Doing so eliminates confusion in the gross volume calculation of where the 0.375' value comes from.
87,	Appendix 1	The third paragraph, first line reads "of the dike" This is the first mention of a dike. This statement should be reworded to maintain consistency throughout the discussion.
88	Appendix 1	The sixth paragraph, second line reads "7.481 gal/ cu ft" Where does this value is used, and how does it relate to the 1.33 maximum specific gravity used throughout the body of Exhibit D-12? Any conversion from specific gravity to gal/cu ft should be shown.
89	Appendix 1	The seventh paragraph, first line describes an aisle space within the secondary containment. Please provide, at a minimum a sketch representing these dimensions. As written, there is room at the bottom of the page for the graphical representation.
90	Appendix 1	The seventh paragraph, fifth line reads "4 ½ inches, (0.375 ft.)" This should be revised to read "4 ½ inches (0.375 ft.)," The comma is misplaced.
91	Appendix 1	It is unclear which way the ramp raises. Please provide detail as to whether the ramp raises up into the steel secondary containment area, or if the ramp drops down into the steel secondary containment area.

## ATTACHMENT 2 - Select References for Exemplary Purposes

#### References

- (1) Gilbert, R. O., 1987. Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold, New York.
- (2) Hayes, W.B., and G. S. Koch, 1984. Constructing and Analyzing Area-Of-Influence Polygons by Computer, Computers and Geosciences Vol. 10, No. 4, pp. 411-430.
- (3) Lukovic, D., 2000. Sampling Grid Calculator, Ohio Environmental Protection Agency, Division of Hazardous Waste Management, Columbus, Ohio.
- (4) Ohio Environmental Protection Agency, 1999. Closure Plan Review Guidance, Division of Hazardous Waste Management, Columbus, Ohio.
- (5) Schweitzer, G. E., and J. A. Santolucito (editors), 1984. *Environmental Sampling for Hazardous Wastes*, ACS Symposium Series No. 267, American Chemical Society, Washington, D.C.
- (6) U.S. Environmental Protection Agency, 1984. *Characterization of Hazardous Waste Sites: Methods Manual*, Volumes 1 and 2, Office of Research and Development, U.S. Environmental Protection Agency, Las Vegas, Nevada.
- (7) U.S. Environmental Protection Agency, 1996. Soil Screening Guidance: Technical Background Document, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.



## HUKILL CHEMICAL CORPORATION

7013 KRICK ROAD • BEDFORD, OHIO 44146-4493 • 440 / 232-9400 • FAX 440 / 232-9477

Over Fifty Years of Quality Products and Services

March 2, 2000

**CERTIFIED MAIL** 

Ms. Harriet Croke RCRA Permitting Branch HRP-8J 77 West Jackson Blvd Chicago, IL 60604

OHD 001 926 740

Dear Ms. Croke:

In accordance with OAC 3745-50-51(C)(1)(a)(ii), this letter shall serve as your notification that Hukill Chemical Corporation, a permitted Part B facility, has implemented one (1) Class 1A and three (3) Class 1 permit modifications. Class 1 modifications are administrative or informational changes. Class 1A modifications require prior approval of the Director of the Ohio EPA.

Class 1A Modification (dated December 10, 1999) requesting a one-year extension to the Spent Acid tank closure deadline to account for remediation of underlying contaminated soils.

Assigned OEPA tracking number 991220-1A-01 and approved January 6, 2000.

Class 1 Modification (dated December 8, 1999) replacing one 21,000-gallon tank with two 14,000-gallon tanks.
 Assigned OEPA tracking number 991213-1A-01 and approved by OEPA January 7, 1999.

 <u>Class 1 Modification</u> (dated November 30, 1999) requesting six informational changes to Section D – Process Information.

Assigned OEPA tracking number 991202-1-01 through 991202-1-06 and approved January 24, 2000.

Class 1 Modification (dated January 30, 2000) changing the reporting schedule for progress reports from monthly to quarterly to conform with Agency guidance.

Assigned OEPA Tracking number 000131-1-01 and approved February 16, 2000.

If you have any questions or concerns about these modifications, please contact me at the number listed above.

Respectfully,

Judy Trader

Environmental, Health & Safety Engineer

Cc: Marlene Kinney, Ohio EPA - DHWM

APR 10 2000

ROMA RECORDS INDUM

#### HUKILL CHEMICAL CORPORATION

7013 KRICK ROAD • BEDFORD, OHIO 44146-4493 • 440 / 232-9400 • FAX 440 / 232-9477

Over Fifty Years of Quality Products and Services

August 19, 1999

Ms. Harriet Croke RCRA Permitting Branch HRP-8J 77 West Jackson Boulevard Chicago, IL 60604

Re:

**Hukill Chemical Corporation** 

US EPA I.D. Number OHD001926740

May 21, 1999 Class1/1A Modification Requests

Dear Ms. Croke,

In accordance with OAC 3745-50-51 (c)(1)(a)(ii), this letter shall serve as your notification that Hukill Chemical Corporation has submitted two Class 1 modification requests and two Class 1A modification requests to the Ohio EPA. Class 1 modifications are administrative or informational changes that can be implemented right away without Ohio EPA approval. Class 1A requests require the OEPA Director's approval prior to implementation. The following details the modifications and Ohio EPA's response to the four modifications:

- Class 1: The update to Section I of the Part B permit application includes the most recent closure/post closure cost estimate. This administrative change was acknowledged by OEPA in a letter dated June 9, 1999 and was assigned a tracking system (PITS) ID number of 990525-1-1.
- Class 1: The second update to Section I of the Part B permit application, to change Table 3 and Table 3A to reflect the current rinseate standards, was assigned a PITS ID number of 990525-1-2. This was acknowledged by OEPA in a letter dated June 9, 1999.
- Class 1A: Modification of the timeframe found in permit condition A.26(b)(iii), submittal of an approvable closure plan. This was approved by OEPA in a letter dated June 9, 1999 and was assigned a tracking system PITS ID number of 990525-1A-1.
- Class 1A: Change in the closure schedule to extend the closure period for closure of the spent acid tank from 180 days to 270 days. This was approved by OEPA in a letter dated June 10, 1999 and was assigned a tracking system PITS ID number of 990528-1A-1.

If you have any questions, please feel free to contact me at the number listed above or you can contact Ms. Marlene Kinney with OEPA at (330) 963-1162.

Respectfully,

Jennifer P. Žylko

Environmental, Health and Safety Manager

**Hukill Chemical Corporation** 

### HUKILL CHEMICAL CORPORATION

7013 KRICK ROAD • BEDFORD, OHIO 44146-4493 • 440 / 232-9400 • FAX 440 / 232-9477

Over Fifty Years of Quality Products and Services

March 5, 1999

Ms. Harriet Croke RCRA Permitting Branch HRP-8J 77 West Jackson Boulevard Chicago, IL 60604

Re: Hukill Chemical Corporation

U.S. EPA I.D. Number: OHD001926740 Ohio EPA I.D. Number: 02-18-0315

Class 1-A Modification Request Approved and Implemented

Dear Ms. Croke,

In accordance with OAC 3745-50-51(C)(1)(a)(ii), this letter shall serve as your notification that Hukill Chemical Corporation, a permitted 'Part B' facility, has implemented a Class 1A modification which was approved by the Ohio EPA on January 20, 1999. Class 1A modifications are administrative or informational changes that require approval before implementation.

This modification made changes to an interim compliance date as agreed to in a meeting with the Northeast District Office (NEDO) of the Ohio EPA in December 1998. The compliance date was replaced with a requirement for monthly progress reports. This change allows for better, ongoing communication with the agency, and will help ensure that the final submittal will be acceptable to the agency. The first monthly progress report was submitted to the NEDO on February 2, 1999.

If you have any questions on this matter, please feel free to contact me at the number listed above.

Respectfully,

Jennifer P. Zylko

Environmental, Health and Safety Manager

Jenny Miko

**Hukill Chemical Corporation** 

cc: Marlene Kinney - Ohio EPA, NEDO